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ABSTRACT
Dynamic program analysis is invaluable for malware detection,
debugging, and performance profiling. However, software-based
instrumentation incurs high overhead and can be evaded by anti-
analysis techniques. In this paper, we propose LibIHT, a hardware-
assisted tracing framework that leverages on-CPU branch tracing
features (Intel Last Branch Record and Branch Trace Store) to effi-
ciently capture program control-flow with minimal performance
impact. Our approach reconstructs control-flow graphs (CFGs) by
collecting hardware generated branch execution data in the kernel,
preserving program behavior against evasive malware. We imple-
ment LibIHT as an OS kernel module and user-space library, and
evaluate it on both benign benchmark programs and adversarial
anti-instrumentation samples. Our results indicate that LibIHT re-
duces runtime overhead by over 150× compared to Intel Pin (7×
vs 1,053× slowdowns), while achieving high fidelity in CFG re-
construction (capturing over 99% of execution basic blocks and
edges). Although this hardware-assisted approach sacrifices the
richer semantic detail available from full software instrumentation
by capturing only branch addresses, this trade-off is acceptable for
many applications where performance and low detectability are
paramount. Our findings show that hardware-based tracing cap-
tures control flow information significantly faster, reduces detection
risk and performs dynamic analysis with minimal interference.
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1 INTRODUCTION
Dynamic binary program analysis plays a critical role in reverse
engineering and security evaluation [1, 3, 20, 22], enabling analysts
to understand program behavior when source code is unavailable.
In security contexts, such analysis is indispensable for identifying
vulnerabilities, detecting malware, and verifying that system com-
ponents adhere to expected behavior. Reverse engineering not only
facilitates the discovery of hidden or obfuscated code constructs
but also informs the development of robust defensive strategies.

Despite the importance of dynamic analysis, existing tools typ-
ically rely on software-based instrumentation methods (e.g.,Intel
Pin [18] and DynamoRIO [5]) that inject monitoring code into
the target program [4, 10, 21, 27]. While these approaches pro-
vide fine-grained visibility into runtime behavior, they incur sub-
stantial performance overhead and often perturb the program’s
natural execution. Furthermore, because software-based instrumen-
tation inserts hooks and modifies the target binary at runtime,
these frameworks are routinely subject to anti-analysis and eva-
sion techniques [8, 9, 11, 12, 24, 25, 31], which in turn compromise
control-flow reconstruction and the overall analysis reliability.

In this paper, we introduce LibIHT, a hardware-assisted tracing
framework that complements traditional dynamic binary instru-
mentation by addressing its performance and detectability limi-
tations. Rather than injecting instrumentation code at runtime,
LibIHT leverages on-CPU branch tracing features built into com-
modity Intel x86/x64 processors [15]. Specifically, LibIHT uses Last
Branch Record (LBR) and Branch Trace Store (BTS) to capture pro-
gram execution with minimal overhead. By operating directly at the
hardware level, LibIHT significantly reduces performance penalties
and preserves natural execution. Although this approach records
only branch addresses (thus offering lower granularity than full soft-
ware instrumentation), we hypothesize that such coarse-grained
data is sufficiently accurate for effective reverse engineering and dy-
namic analysis. Notably, while existing hardware-assisted tools for
enforcing control flow integrity (CFI) achieve high accuracy and re-
silience in security enforcement, their designs have predominantly
targeted runtime protection rather than assisting reverse engineer-
ing [7, 17, 23, 29, 32]. The complexity of harnessing hardware-level
tracing and associated trade-offs have thus far prevented a unified
solution tailored for reverse engineering. As a result, LibIHT is an
ideal solution when analysis scenarios demand high performance
and low detectability more than exhaustive semantic information.

https://orcid.org/0009-0009-9375-1519
https://orcid.org/0000-0003-0991-7926
https://orcid.org/0009-0009-9650-4011
https://orcid.org/0000-0003-1719-3112
https://orcid.org/0009-0007-4226-656X
https://orcid.org/0000-0003-2091-7484
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Changyu Zhao, Yohan Beugin, Jean-Charles Noirot Ferrand, Quinn Burke, Guancheng Li, and Patrick McDaniel

We evaluate LibIHT across a diverse set of binaries, including
both standard and adversarial executables, assessing its effective-
ness in (1) reconstructing accurate control flow graphs, (2) mini-
mizing runtime overhead compared to software-based instrumen-
tation, and (3) maintaining resilience against common anti-analysis
techniques. By leveraging the processor’s built-in tracing features,
LibIHT records execution data at the basic-block level and recon-
structs precise control flow with minimal interference. Our results
show that LibIHT reconstructs control flow with over 98% accu-
racy—achieving a mean Jaccard Index of 0.9836, 99.48% block cov-
erage, and 99.69% edge coverage—while reducing average runtime
overhead to 7× (versus 237× for DynamoRIO and 1,053× for Intel
Pin). In other words, LibIHT delivers high-fidelity analysis at a frac-
tion of the cost: it eliminates intrusive instrumentation and thereby
avoids the severe slowdowns of traditional tools. Furthermore, its
reliance on hardware-level tracing enables robust analysis that by-
passes the diverse set of anti-debugging and anti-instrumentation
benchmarks we considered.

Our contributions are as follows:
• We quantify challenges faced by software-based dynamic
analysis by measuring both performance overhead and sus-
ceptibility to evasion across real-world benchmarks.

• We introduce LibIHT, a hardware-assisted program analy-
sis framework that leverages Intel LBR and BTS to enable
efficient and accurate execution tracing.

• We evaluate LibIHT on a diverse set of binaries, demonstrat-
ing its effectiveness in reconstructing control flow graphs
whilemaintaining low runtime overhead and resilience against
anti-analysis techniques.

The complete LibIHT toolchain (kernel module and user-space
library) is released as open-source software at the following url:
https://github.com/libiht/libiht

2 BACKGROUND
2.1 Software-Based Dynamic Analysis Tools
Traditional dynamic analysis is typically performed with dynamic
binary instrumentation (DBI) frameworks such as Intel Pin [18]
and DynamoRIO [5]. These DBI tools work by injecting monitor-
ing code into the target program at runtime to capture execution
traces and reconstruct control flow. Figure 1 and Figure 2 illustrate
the high-level designs of Pin and DynamoRIO, respectively. Both
frameworks employ just-in-time (JIT) compilation and maintain
a dedicated code cache to hold instrumented code blocks, thereby
enabling detailed runtime monitoring. Although both Intel Pin
and DynamoRIO support flexible instrumentation and fine-grained
tracing, they suffer from two major drawbacks:

• Performance Overhead: Instrumentation can slow down
execution by orders of magnitude, making it impractical for
real-time or large-scale analysis.

• Anti-Analysis Evasion: Many programs, especially mal-
ware, employ anti-instrumentation techniques to detect and
evade software-based monitoring [8, 9, 11, 12, 24, 25, 31].

Limitations. Although these binary instrumentation frameworks
are widely used and effective for detailed runtime program anal-
ysis, their design inherently prioritizes fine-grained visibility and
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Figure 1: High-level architecture of Intel Pin (adapted
from [18]). The tool inserts a virtual machine (VM), JIT com-
piler, and dispatcher to dynamically transform the target pro-
gram, storing instrumented code in a dedicated code cache.
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Figure 2: Overview of DynamoRIO’s design (adapted
from [5]). Similar to Intel Pin, it uses a code cache for in-
strumented basic blocks, with a dispatcher managing control
transfers to and from the running application.

flexible instrumentation over execution performance. As our moti-
vating experiment results demonstrate (see Table 1), even simple,
deterministic workloads such as ls, dd, echo, sort, wc, and cat
(see Section A.1) suffer from significant performance degradation,
even without adopting any analysis logic to the binary. For example,
while native execution of echo requires only 4 ms, running it under
Intel Pin increases the runtime to 508 ms, representing a slowdown
of over 127×. Similar trends are observed with the other commands,
highlighting that the overhead introduced by these frameworks
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Table 1: Instrumentation overhead for commonly used
coreutils under Intel Pin and DynamoRIO. Each workload
command is listed in Section A.1. All timings are in millisec-
onds; slowdown factors are shown in parentheses.

Program Native Intel Pin DynamoRIO

ls 7 ms 829 ms (118×) 94 ms (13×)
dd 14 ms 625 ms (45×) 68 ms (5×)
echo 4 ms 508 ms (127×) 54 ms (14×)
sort 9 ms 600 ms (67×) 63 ms (7×)
wc 8 ms 559 ms (70×) 56 ms (7×)
cat 7 ms 497 ms (71×) 55 ms (8x)

can severely distort execution timing. This trade-off renders them
impractical for performance-sensitive or real-time systems and may
lead to inaccuracies in analyses such as control flow graph (CFG)
reconstruction, particularly in security-critical applications where
fidelity and stealth are paramount.

2.2 Hardware-Assisted Tracing Mechanisms
To address the limitations of software-based tracing, modern x86
processors provide hardware-level branch tracing mechanisms.
These include Last Branch Record (LBR), Branch Trace Store (BTS),
and Intel Processor Trace (Intel PT) [15]. By capturing control-flow
transitions at the processor level, these features enable efficient
tracing without instrumenting program code.
LBR. Figure 3 (left) illustrates the Last Branch Record mechanism.
LBR uses a small, fixed-size circular buffer of Model Specific Regis-
ters (MSRs) to record the source and destination addresses of the
most recent branch instructions executed by the CPU. Each new
branch pushes the oldest entry out of the buffer, so LBR always re-
flects the last 𝑛 (ranging from 4 to 32 base on CPU model) branches
taken. Because all operations occur entirely in hardware registers,
enabling LBR incurs virtually no runtime overhead. This makes
LBR ideal for capturing short-term execution snapshots, such as
profiling tight code paths or quickly sampling control-flow behavior
without disrupting program throughput.
BTS. Figure 3 (right) shows the Branch Trace Store mechanism.
Instead of limited MSRs, BTS writes every branch event into a ded-
icated in-memory trace ring buffer managed by the CPU’s Debug
Store facility. When a branch occurs, the processor appends its
source and destination addresses to this buffer until either tracing
is disabled or interrupted. When the ring buffer nears interrupt
threshold, the Debug Store facility raises an interrupt, giving the OS
an opportunity to process the collected branch records to prevent
data loss. BTS therefore provides complete, long-duration coverage
of control-flow transitions, at the cost of extra memory bandwidth
and the need to allocate and periodically drain the trace buffer.
The ring buffer’s size is customizable, but its memory allocation
must follow restrictions specified in the Manual (e.g., alignment and
placement requirements) [15]. Users must configure properly and
retrieve its contents—either on the real time or after execution—to
reconstruct a full sequence of branch records for offline analysis.

Intel PT. Intel PT is a third hardware tracing mechanism that
delivers instruction-level control-flow information in a highly com-
pact, packetized format. As the CPU runs, it emits packets that
encode branch-taken targets (TIP packets) and conditional branch
outcomes (TNT packets), along with timing and context-switch
markers. These packets are written into a ring buffer in memory,
which tools like Linux perf [16] can capture with minimal overhead.

However, turning the raw PT packet stream into a usable control-
flow trace requires substantial post-processing. A decoder must
decompress each packet, translate packet fields back into concrete
instruction addresses, and correlate those addresses with the exact
binary image, symbol table, and load offsets in use during tracing.
In effect, it must replay the recorded execution against the original
executable to reconstruct basic blocks and edges. This decoding
step consumes significant CPU cycles and I/O bandwidth, often
exceeding the cost of the initial trace collection. As a result, full
PT trace decoding can become a performance bottleneck and a
memory-pressure concern, limiting its practicality for real-time
monitoring or large-scale batch analysis.

3 SYSTEM
In this section, we present a comprehensive description of our
approach to leveraging hardware tracing capabilities, addressing
existing challenges and outlining our threat model and assump-
tions. We further describe the detailed system design of LibIHT,
including the specific roles and interactions between kernel-space
and user-space components, their communication mechanisms, and
the workflows that enable efficient control flow analysis.

3.1 Problem Context
In dynamic analysis [3, 20], a fundamental task is the precise infer-
ence of a program’s control flow. Accurately reconstructing CFG is
critical for a broad spectrum of applications including malware de-
tection, reverse engineering, program comprehension, vulnerability
assessment, and debugging. Control flow information elucidates
both the structural and behavioral properties of a program, en-
abling analysts to identify executed paths, isolate anomalous or
malicious behaviors, and decode intricate logic within binaries lack-
ing source code. This capability is especially crucial in security
contexts, where the reconstruction of CFG can expose obfuscated
code, hidden functionalities, and subtle malicious actions that may
evade conventional static or cursory dynamic analysis.

As discussed in Section 2.1, existing methodologies exhibit signif-
icant limitations, underscoring the need for alternative approaches
that deliver high-fidelity control flow reconstruction while concur-
rently minimizing performance overhead and resisting evasion.

3.2 Threat Model
Our threat model considers adversaries who have complete con-
trol over the distributed binaries and actively deploy sophisticated
anti-analysis techniques to protect the internal logic of their ap-
plications from external scrutiny. In practice, adversaries typically
attempt to detect and resist traditional software instrumentation
through various defensive measures, including debugger detec-
tion, extensive code obfuscation, runtime integrity checks, and
timing or environmental based evaluations specifically designed
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Figure 3: High-level architecture of Intel’s LBR and BTS mechanism. LBR maintains a stack of MSRs on each CPU core for the
most recent branches, while BTS extends this by logging branch records into a dedicated buffer in memory.

to identify performance overhead associated with instrumenta-
tion [8, 9, 11, 12, 24, 25, 31]. Additionally, adversaries may employ
dynamic modifications of the program’s control flow at runtime,
further complicating analysis efforts by obfuscating execution paths
and obscuring true program behavior.

In defining our threat model, we specifically assume that adver-
saries neither intend nor possess the ability to gain kernel-level
privileges (ring-0), and we further posit that kernel integrity re-
mains robustly safeguarded by modern OS protections. We also
explicitly state that adversaries do not have the capability to success-
fully compromise or subvert these kernel-level safeguards. Given
these clearly defined constraints, adversaries are effectively limited
to user-space manipulation only. Recognizing this critical security
boundary, LibIHT strategically positions its essential tracing and
analysis components within the kernel space, effectively leveraging
the user-kernel boundary. By operating in this secure and privi-
leged environment, LibIHT significantly enhances its capability
to resist aggressive adversarial attempts at evasion, distortion, or
disruption of trace data integrity, thereby preserving the reliability
and accuracy of analysis results.

3.3 System Overview
LibIHT is a dynamic binary analysis library framework that recon-
structs execution control flow using hardware tracing capabilities
provided by modern commodity Intel processors. It employs a dual-
component architecture comprising kernel-space and user-space
elements. The kernel-space component is responsible for configur-
ing and managing hardware tracing features, while the user-space
component interacts with the kernel module to retrieve and analyze

trace data. Figure 4 illustrates the high-level architecture of LibIHT
and interactions between these components.
Kernel-Space Component. The kernel components, implemented
as Linux kernel modules and Windows kernel drivers, operate
within privileged ring-0 kernel space. These modules interact di-
rectlywith Intel processor hardware to access raw hardware-generated
trace data (LBR/BTS), manage hardware trace parameters men-
tioned in Section 2.2, and securely store the generated trace data. By
leveraging kernel-level privileges, LibIHT ensures integrity and ef-
fectively mitigates detection and evasion attempts from user-space
adversaries as studied in Section 3.2.
User-SpaceComponent.User-space components are implemented
as a shared library on Linux and a dynamic link library (DLL) on
Windows, offering accessible APIs for user-space applications per-
forming security analysis. These components communicate with
kernel modules through secure kernel-user interfaces, primarily
using device I/O Control (ioctl) system calls, to retrieve raw hard-
ware trace data. They abstract the complexity of hardware interac-
tions by exposing high-level APIs, which process raw trace data to
reconstruct control flow graphs (CFGs), thus enabling detailed se-
curity assessments. This separation between kernel and user spaces
maintains strong security boundaries while optimizing usability.

3.4 Interaction and Data Flow
The operational workflow of LibIHT consists of two phases: (1)
Data Collection and (2) Control-Flow Reconstruction. In the Data
Collection phase, a user-space component initiates a trace session
by issuing ioctl requests to the kernel module. The kernel module
then configures and activates the hardware tracing mechanisms
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Figure 4: High-level architecture of LibIHT. The kernel-space component manages hardware tracing and collects data for the
target process and its children. An optional user-space monitor (e.g., a debugger or custom tool) can analyze the trace data,
though it is not required for core operation.

(LBR and BTS). Once tracing is enabled, the processor begins gen-
erating branch records in real time as the program executes. The
kernel module buffers these trace records in protected kernel mem-
ory, preventing any tampering by user-space malware.

In the Control-Flow Reconstruction phase, the user-space analy-
sis library retrieves the buffered trace data via secure ioctl calls.
The library then parses the sequence of branch records and rebuilds
the program’s runtime CFG. This reconstruction involves ordering
the basic blocks as they were executed and linking them into a
CFG that reflects the program’s actual paths. The resulting CFG
provides critical insight for analysis, enabling detection of hidden
behaviors, reverse engineering of program logic, and identification
of anomalies. By dividing work between kernel and user space in
this manner, LibIHT achieves high efficiency and remains resilient
to evasion: the kernel performs low-level data capture with minimal
overhead, and user-space performs heavy analysis without risking
the integrity of the tracing process.

3.5 Trade-offs and Advantages
In designing LibIHT, we deliberately traded off rich semantic detail
for dramatically improved performance and enhanced resistance to
anti-analysis measures. Traditional software-based instrumentation
tools capture comprehensive execution context-including complete
instruction states, register contents, and memory access patterns-
that enable highly detailed control-flow reconstruction. In contrast,
LibIHT relies exclusively on hardware-level branch tracing, record-
ing only the source and destination addresses of branch events.
This means that while LibIHT does not capture the finer details
necessary for complete state recovery, it avoids the heavy compu-
tational and storage burdens imposed by software instrumentation.
For many applications, such as rapid initial reverse engineering or
automated malware triage, the overall control-flow information is
sufficient to pinpoint suspicious functions or anomalous behavior.

We conceptualize this design decision within a trade-off space
defined by two axes: performance and semantic granularity. On the

performance axis, software-based tools often slow down execution
by orders of magnitude-our preliminary experiment results show
slowdowns exceeding 100× in some cases-rendering them imprac-
tical for real-time or large-scale analysis. By shifting instrumen-
tation to the hardware level, LibIHT achieves significantly higher
throughput, facilitating rapid analysis and minimally perturbing
the program’s natural execution flow. On the semantic granular-
ity axis, the cost of this performance gain is the loss of detailed
context: LibIHT captures only branch addresses, omitting detailed
state information that might be essential for deep forensic analysis.
However, for early-stage reverse engineering and dynamic analysis
tasks, this level of detail is typically sufficient to flag potential secu-
rity issues. Importantly, these approaches are complementary. Once
LibIHT identifies areas of interest in an execution trace, researchers
can then employ detailed software-based instrumentation or static
analysis techniques to perform deeper investigation.

Moreover, by operating within kernel space and harnessing in-
trinsic processor features, LibIHT is inherently more robust against
anti-instrumentation evasion techniques. In summary, LibIHT rep-
resents a balanced solution that prioritizes rapid, low-overhead
trace collection and stealth while accepting a reduction in semantic
detail-a trade-off that we argue is both reasonable and practical for
a broad range of security and debugging applications.

4 EVALUATION
We apply our approach to answer the following research questions:

• RQ1 (Benign Setting - Accuracy): How closely does Li-
bIHT’s traced CFG match actual execution paths, and what
semantic details are lost when relying on hardware-based
tracing instead of software instrumentation? (Section 4.2)

• RQ2 (Benign Setting - Performance) How does the per-
formance of LibIHT compare to traditional dynamic analysis
frameworks (e.g., Intel Pin and DynamoRIO) in benign sce-
narios across diverse binaries? (Section 4.3)
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• RQ3 (Adversarial Setting - Resilience): Under adversar-
ial conditions (e.g., anti-analysis or adaptive attacks), how
effectively does LibIHT preserve the accuracy and perfor-
mance established in RQ1 and RQ2? What techniques can
adversaries use to target hardware-based tracing, and how
does LibIHT mitigate such attacks? (Section 4.4)

4.1 Experimental Setup
We conducted our experiments on an Intel NUC 11 Essential Kit
(model NUC11ATKPE), equipped with an Intel Pentium Silver
N6005 processor, 8 GB of memory, and a 512 GB SSD. Ubuntu
24.04 LTS was installed to provide a modern Linux environment
with up-to-date kernel support. This system was chosen because it
is a commodity Intel platform that offers LBR and BTS capabilities,
making it well-suited for evaluating hardware-based control-flow
tracing under real-world conditions.
Software Baselines. In our experiments, we compare LibIHT
against two widely used state-of-the-art dynamic binary analy-
sis tools as discussed in Section 2.1: DynamoRIO (v 11.3.0) [5] and
Intel Pin (v 3.31) [18]. These tools serve as a reference baseline for
evaluating LibIHT on both the accuracy and performance overhead.
Benign Benchmark. To comprehensively assess accuracy and
performance overhead under normal execution conditions, we
construct a benign benchmark suite combining standard, widely-
recognized programs. We include several GNU Core Utilities (Core-
utils) programs, such as ls, grep, and cat, among others. These
utilities are chosen due to their widespread use in daily computing
tasks, making them ideal candidates for assessing tracing accuracy
and overhead under realistic, routine user-space execution scenar-
ios. Additionally, their control-flow diversity—from simple, linear
execution to complex branching and loops—facilitates rigorous
assessment of trace completeness and accuracy.

The benign benchmark form a comprehensive set of program for
evaluating LibIHT’s tracing fidelity and instrumentation overhead
in controlled, benign conditions.
Adversarial Benchmark. To evaluate the resilience and robust-
ness of LibIHT in adversarial environments, we construct a care-
fully curated adversarial testbench consisting of specifically chosen
malware Proof-of-Concept (PoC) samples, each featuring known
anti-analysis measures [31]. The adversarial benchmarks are se-
lected to represent a broad spectrum of anti-instrumentation and
evasive techniques encountered in real-world malicious software [9,
12, 25] including:
Indirect Evasion Techniques. Indirect evasion techniques detect
the side effects of instrumentation by examining abnormal proces-
sor state or wrong simulation of real instruction execution. For
example, the Functional Limitations (FL) tests include:

• FSBase Integrity Check:Verifies consistency in the fsbase
register by comparing outputs from rdfsbase and prctl.

• RIP Preservation Check: Ensures that the instruction
pointer remains unchanged after operations like system calls.

Direct Evasion Techniques. Direct evasion techniques actively
probe for artifacts introduced by instrumentation. These methods
are typically subdivided as follows:

• Code Cache Artifact Detection (CA): Techniques such as
NX Page Execution Detection, Self-Modifying Code (SMC)
Detection, and VMLeave Pattern Detection are used to ex-
pose shortcomings in handling dynamic code modifications
or cached instrumentation artifacts.

• Environment Artifact Detection (EA): These methods
search for instrumentation-related artifacts, such as environ-
ment variables commonly set by DBI frameworks, analysis of
mapped files (e.g., inspecting /proc/self/maps for known
instrumentation libraries), and detection of abnormal mem-
ory page permissions.

• Runtime Just-in-Time Compiler Overhead Detection
(RO): This subcategory involves measuring execution timing
anomalies across repeated code path iterations or inspecting
dynamic linking behavior to detect irregularities indicative
of JIT-based instrumentation.

Collectively, these adversarial benchmarks allow us to rigorously
evaluate LibIHT’s resilience under sophisticated evasion attempts.
Table 2 provides an overview of the adversarial test samples cur-
rently employed in our evaluation, along with a brief description
of the corresponding techniques.
Metrics. After collecting traces, we evaluate LibIHT along three
dimensions:

• Accuracy of Tracing: We compare the CFG reconstructed by
LibIHT to a ground-truth CFG obtained via static analysis
for each program. We use graph similarity metrics Jaccard
index and normalized graph edit distance (GED) to quantify
structural similarity, and we calculate coverage metrics (the
percentage of basic blocks and edges from the ground truth
that dynamic analysis tools captured).

• Performance Overhead: We measure runtime overhead by
comparing execution time with LibIHT tracing against na-
tive execution time (no tracing). We report the slowdown
factor and record throughput in instructions per second (IPS)
as a secondary performance metric.

• Resilience to Evasion: We observe whether each adversarial
sample successfully detects or evades analysis. Specifically,
we note if a program crashes or alters its behavior under
LibIHT tracing. If LibIHT is partially evaded, wemeasure the
drop in tracing accuracy and increase in overhead relative
to benign conditions.

These metrics and criteria explained in the following subsections
will determine how well LibIHT answers our research questions.

4.2 Accuracy in Benign Settings
In this section, we aim to answer RQ1, i.e., How accurately do Li-
bIHT ’s CFG traces reflect true execution paths, and what semantic
details are lost by using hardware-based tracing versus software
instrumentation?

To systematically evaluate the accuracy of LibIHT and other dy-
namic analysis tools, we compare their reconstructed control-flow
graphs (CFGs) against a ground-truth CFG obtained via static anal-
ysis (using angr [28]). Because dynamic tools emit only a sequence
of branch addresses (i.e., a trace of basic-block transitions), we first
project that trace back onto the full, static CFG to isolate the exact
execution path. Once we have two subgraphs, the ground-truth
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Table 2: Overview of Adversarial Benchmark Samples Adopted from [31]

Sample Category Subcategory Technique/Description

fl_fsbase.c Indirect Evasion FL FSBase Integrity Detection: detects discrepancies (e.g., compar-
ing rdfsbase vs. prctl).

fl_ripsyscall.c Indirect Evasion FL RIP Preservation Detection: verifies that the instruction pointer
remains unchanged after system calls.

ca_nx.c Direct Evasion CA NX Page Execution Detection: tests for code cache artifacts via
non-executable page checks.

ca_smc.c Direct Evasion CA Self-Modifying Code Detection: checks handling of dynamic
code modifications.

ca_vmleave.c Direct Evasion CA VMLeave Pattern Detection: probes instrumentation layers for
abnormal transitions.

ea_envvar.c Direct Evasion EA Environment Variable Detection: searches for DBI-specific env
vars (Pin, DynamoRIO, etc.).

ea_mapname.c Direct Evasion EA Mapped File Name Detection: inspects /proc/self/maps for
known instrumentation tools.

ea_pageperm.c Direct Evasion EA Page Permission Detection: identifies suspicious read-write-
execute memory regions.

ro_jitbr.c Direct Evasion RO JIT Branch Timing Detection: measures anomalies in repeated
code paths to detect JIT overhead.

ro_jitlib.c Direct Evasion RO JIT Library Loading Detection: probes behavior of dynamic
linking or JIT engines for abnormal latency.

execution path and the traced path, we quantify their similarity
and coverage with the following detailed metrics:

• Jaccard Index: Measures the overlap between the two sub-
graphs’ node and edge sets, giving a normalized score of
similarity between 0 and 1. A higher Jaccard index indicates
a larger shared subgraph relative to the union of both, cap-
turing both similarity and diversity in a single value.

• Normalized GED: Counts the minimum number of structural
edits (node/edge insertions or deletions) required to trans-
form the traced subgraph into the ground-truth subgraph,
then divides by the total number of elements in the ground
truth. By normalizing to graph size, we account for varying
trace complexities and ensure themetric remains comparable
across programs of different scales.

• Basic Block Coverage: The fraction of ground-truth basic
blocks that appear in the traced CFG. This directly measures
how comprehensively a tool records every executed block,
reflecting path completeness at the node level.

• Edge Coverage: The fraction of ground-truth control-flow
edges (i.e., transitions between blocks) that are present in
the traced CFG. This metric gauges how faithfully the tool
preserves the actual execution semantics.

Together, these metrics provide complementary perspectives
on tracing fidelity: the Jaccard index and normalized GED capture
structural similarity and deviation, while block and edge coverage
quantify completeness of execution path recovery. This multidi-
mensional view helps illustrate the trade-offs between semantic
detail and performance inherent in hardware-based tracing versus
software instrumentation.

Table 3: Mean Control-Flow Graph Reconstruction Metrics
on Benign Benchmarks

Metric LibIHT Intel Pin DynamoRIO

Jaccard Index 98.36 ± 0.14% 100% 100%
Normalized GED 0.0231 ≈ 0 ≈ 0
Block Coverage 99.92 ± 0.04% 100% 100%
Edge Coverage 99.48 ± 0.15% 100% 100%

Table 3 reports the mean and variance of four key CFG recon-
struction metrics: Jaccard index, normalized GED, block coverage,
and edge coverage. The data was aggregated over all binaries inside
benign benchmarks suites. The low standard deviations in each row
indicate that there are no significant outliers: each tool behaves
consistently across diverse binaries.

Looking first at the software-instrumentation baselines, both
Intel Pin and DynamoRIO achieve perfect reconstruction (100%
Jaccard, ≈ 0 GED, and full block and edge coverage), reflecting their
ability to instrument every executed instruction and record only
the target process’s control-flow transitions. In contrast, LibIHT
attains a Jaccard index of 98.36% (± 0.14%) and a normalized GED
of 0.0231, alongside nearly complete coverage (99.92% ± 0.04% of
blocks and 99.48% ± 0.15% of edges).

The slight gap between LibIHT and the software baselines does
not stem from missing user-mode transitions. Instead, it is caused
by a small amount of noise that LBR and BTS record indiscrim-
inately. These extra branches appear because the CPU executes
a short sequence of instructions just as it enters and exits kernel
mode for system calls or interrupts. At those moments, the privilege
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bit has not yet been fully set or cleared. As a result, even though
LibIHT disables tracing in privileged mode, it still captures those
boundary transitions. This behavior is unavoidable given the hard-
ware’s branch-recording granularity, but a simple post-processing
step can remove all such kernel entries. By discarding any branch
whose address falls outside the target process’s user-space region,
one can restore a perfect 100% match with the ground-truth CFG.
Although this cleanup is not yet automated, LibIHT ’s raw traces
already achieve over 99% block and edge coverage, demonstrating
sufficient precision for most analysis tasks.

Takeaway: Accuracy in Benign Settings

LibIHT delivers near-perfect control-flow reconstruc-
tion with minimal variance, validating that its hardware-
assisted approach incurs only a modest and easily miti-
gated cost inmetric-level similarity compared to traditional
software instrumentation.

4.3 Performance in Benign Settings
In this section, we aim to answer RQ2, i.e., How does the perfor-
mance of LibIHT compare to traditional dynamic analysis frame-
works (e.g., Intel Pin and DynamoRIO) in benign scenarios?

To ensure a fair and reproducible comparison, we run each bi-
nary in our benchmark suite with a small set of representative ar-
gument combinations under six modes: native execution, Intel Pin
without tracing (pin_no_trace), Intel Pinwith tracing(pin_trace),
DynamoRIO without tracing(drrun_no_trace), DynamoRIO with
tracing ((drrun_trace)), and LibIHT with tracing (libiht_trace).
Each configuration is executed five times per argument set, and
we report the mean and standard deviation across all runs and all
argument sets for each binary, thereby capturing both per-run and
per-argument variability.

We collect two complementary performance metrics:
• Execution Slowdown Factor: Defined as

Slowdown =
𝑇instrumented

𝑇native
,

where 𝑇 is the wall-clock execution time measured by perf.
This ratio normalizes results across different program run-
times and isolates the overhead introduced by each instru-
mentation framework.

• Instructions Per Second (IPS): The total executed instruction
count on performing the full tracing workload divided by
execution time, measured by perf stat. IPS quantifies the
impact of tracing on CPU throughput, capturing the cost of
hardware logging logic (for LibIHT) versus software instru-
mentation overhead.

By combining slowdown factors with IPS measurements, we
both normalize for program length and directly observe the per-
instruction cost of each approach. This dual-metric approach en-
sures that neither long-running workloads nor instruction-dense
short workloads bias the comparison.

Figure 5 plots the mean wall-clock time for each Unix utility
on a logarithmic y-axis. Across every benchmark, the orange Li-
bIHT bars lie very close to the blue native baseline, whereas both

Intel Pin and DynamoRIO with tracing incur slowdowns of one to
three orders of magnitude. The error bars reveal that commands
involving frequent user–kernel transitions—such as printf, dd,
and ls—exhibit somewhat greater variability under LibIHT. This
is because LibIHT must temporarily disable and then re-enable
hardware tracing around each system call or context switch, and
the exact number and timing of those transitions can fluctuate
with workload characteristics and OS scheduling. In contrast, CPU-
bound utilities show very tight distributions, underscoring that
LibIHT ’s per-instruction overhead remains minimal and stable
even when averaged over multiple argument runs.

Turning to Figure 6, we normalize each mode to native execution
by plotting the slowdown factor. It reveals a consistent pattern: The
orange bars (LibIHT) cluster around the lower end of the scale,
while the red (DynamoRIO with trace) and brown (Pin with trace)
bars extend one to two orders of magnitude higher. Dashed horizon-
tal lines mark the mean slowdown for LibIHT (6.58×), DynamoRIO
(253.25×), and Pin (1090.34×), clearly illustrating that LibIHT ’s
overhead remains roughly two orders of magnitude below that of
software instrumentation for every benchmark. This normalized
view confirms the same performance advantage seen in raw execu-
tion times, without any special-casing for particular workloads.

Finally, Figure 7 reports the average IPS observed while each
tool executes the full tracing workload. Native runs sustain about
2.2×109 IPS, whereas LibIHT records roughly 1.0×109 IPS. This gap
reflects the inherent cost of on-CPU branch logging rather than any
injected code. By comparison, DynamoRIO with tracing and Intel
Pin without tracing report higher IPS—around 4.5×109 and 3.3×109,
respectively. It is not because they execute the original program
faster but due to the fact that they spend most execution cycles
running instrumentation routines such as dynamic dispatch loops,
just-in-time compilation, and basic-block construction. Although
those routines increase the raw instruction throughput, the sheer
volume of instrumentation logic also dramatically increase overall
wall-clock time, as shown in Figure 5 and Figure 6. In contrast,
LibIHT executes only the application’s native branches plus a small
logging overhead, yielding much lower overall tracing cost despite
a modest per-instruction slowdown.

Takeaway: Performance in Benign Settings

LibIHT delivers dramatically lower end-to-end overhead
compare to software-based dynamic analysis tools. Al-
though per-instruction IPS is modestly reduced by hard-
ware logging, the net performance benefit remains sub-
stantial across diverse workloads.

4.4 Resilience in Adversarial Settings
In this section, we aim to answer RQ3, i.e., Under adversarial con-
ditions (e.g., anti-analysis or adaptive attacks), how effectively does
LibIHT preserve the accuracy and performance established in RQ1
and RQ2? What techniques can adversaries use to target hardware-
based tracing, and how does LibIHT mitigate such attacks?



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

cat cp dd ech
o

he
ad id join ls

md5
sum pri

ntf

sha
1su

m

sha
25

6su
m sor

t
spl

it tai
l

tes
t

un
am

e
un

iq
up

tim
e wc

who

Binary

10 3

10 2

10 1

100

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Mean Execution Time by Binary and Mode
(with ±1  error bars)

Mode
native
libiht_trace
drrun_no_trace
drrun_trace
pin_no_trace
pin_trace

Figure 5: Comparison of mean execution times (in seconds) for standard Unix command-line utilities under six execution
modes.
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Dashed horizontal lines denote the overall mean slowdown across the benign benchmark
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Figure 7: Average instruction per second for standard Unix command-line utilities relative to native execution across six modes.

Table 4: Detection results of dynamic analysis tools by ad-
versarial PoC samples employing anti-debugging and anti-
instrumentation techniques. A check mark (✓) indicates the
tool was detected by the sample’s detection mechanism; a
cross mark (✗) indicates the tool was not detected.

Sample Intel Pin DynamoRIO LibIHT

fl_fsbase.c ✗ ✓ ✗

fl_ripsyscall.c ✗ ✓ ✗

ca_nx.c ✗ ✓ ✗

ca_smc.c ✓ ✗ ✗

ca_vmleave.c ✓ ✗ ✗

ea_envvar.c ✓ ✓ ✗

ea_mapname.c ✓ ✓ ✗

ea_pageperm.c ✓ ✓ ✗

ro_jitbr.c ✓ ✓ ✗

ro_jitlib.c ✗ ✗ ✗

We rigorously evaluate resilience through the execution of cu-
rated malware PoC samples [12, 31], each embodying specific anti-
instrumentation and evasive strategies. First, we systematically doc-
ument the success or failure of program execution by determining
whether each binary detects the presence of tracing, prematurely
terminates, or otherwise misbehaves during analysis. For cases of
partial tracing success, we further investigate the conditioned ac-
curacy and overhead, assessing the degree to which LibIHT retains
control flow tracing accuracy compared to benign scenarios (as

described in RQ1). Additionally, we quantify the performance over-
head of dynamic binary analysis tools introduced under various
adversarial evasion techniques, comparing these results to the over-
head metrics established in benign scenarios (as described in RQ2).
This comprehensive evaluation illuminates the robustness and prac-
tical reliability of LibIHT, highlighting its capability to mitigate
adversarial threats effectively in security-critical applications.

Table 4 shows that LibIHT ’s hardware-level tracing remains
undetected across every anti-instrumentation test, whereas Intel
Pin and DynamoRIO are each caught by distinct evasion strategies:
the functional-limit checks in fl_fsbase.c and fl_ripsyscall.c
flag only DynamoRIO, illustrating that probes targeting altered
processor state affect solely software DBI frameworks; among the
code-cache artifact tests, ca_nx.c (NX-page check) again detects
DynamoRIO, while ca_smc.c and ca_vmleave.c (self-modifying
code and VM-exit patterns) detect only Pin, reflecting tests that
exploit Pin’s instrumentation model; all three environment artifact
checks (ea_envvar.c, ea_mapname.c, and ea_pageperm.c) suc-
cessfully detect both Pin and DynamoRIO—by identifying DBI-
specific environment variables, mapped library names, or abnor-
mal page permissions—but never LibIHT; and in the runtime over-
head probes, ro_jitbr.c (JIT branch-timing) triggers both Pin
and DynamoRIO whereas ro_jitlib.c (JIT-library loading) fails
to detect any tool, suggesting either unexercised detection logic
or insufficient coverage. No adversarial sample ever flags LibIHT,
confirming that existing anti-analysis techniques—designed to rec-
ognize software-injected hooks, code-cache artifacts, or runtime
overhead—are ineffective against hardware-native tracing.

Table 5 then reports, for the samples where each tool successfully
executed, two key metrics: block coverage and slowdown factor.
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Table 5: Accuracy and Overhead Under Adversarial Benchmarks

Block Coverage (%) Slowdown Factor (×)

Sample Intel Pin DynamoRIO LibIHT Intel Pin DynamoRIO LibIHT

fl_fsbase.c 100% N/A 99.1% 674.09 N/A 1.67
fl_ripsyscall.c 100% N/A 99.3% 518.58 N/A 1.26

ca_nx.c 100% N/A 98.7% 677.57 N/A 1.86
ca_smc.c N/A 100% 98.8% N/A 170.13 1.84
ca_vmleave.c N/A 100% 99.9% N/A 1352.34 12.76

ea_envvar.c N/A N/A 99.9% N/A N/A 3.28
ea_mapname.c N/A N/A 99.9% N/A N/A 5.32
ea_pageperm.c N/A N/A 99.9% N/A N/A 5.41

ro_jitbr.c N/A N/A 99.7% N/A N/A 1.51
ro_jitlib.c 100% 100% 99.3% 678.28 158.03 14.52

The left half of the table lists the percentage of ground-truth basic
blocks captured by each tool—Intel Pin and DynamoRIO maintain
nearly 100% coverage when they run, and LibIHT likewise recovers
over 98% of blocks across all tests. The right half shows the slow-
down factor: Pin slows execution by hundreds to over a thousand
times, DynamoRIO by tens to hundreds of times, whereas LibIHT ’s
slowdown remains below 15× in every scenario. Even in the worst
case (ro_jitlib.c, where context-switch noise increases overhead
to 14.5×), LibIHT outperforms the software baselines by more than
an order of magnitude.

Takeaway: Resilience in Adversarial Settings

LibIHT not only evades all common anti-instrumentation
checks but also retains high CFG coverage and orders-
of-magnitude better performance under adversarial con-
ditions—demonstrating its robustness and efficiency as a
hardware-assisted tracing solution.

5 DISCUSSION
The evaluation results suggest that hardware-assisted tracing via
LibIHT is a viable and even preferable alternative to traditional
software instrumentation in many scenarios. In this section, we
reflect on the implications of these findings, discuss the limitations
of our approach, and outline opportunities for future work.
Benefits and Implications. An immediate takeaway is that the
reduction in overhead (an order of magnitude less than Pin or
DynamoRIO) can unlock new uses for dynamic analysis. Techniques
that were previously impractical on resource-constrained or real-
time systems might become feasible with LibIHT. Moreover, the
resilience demonstrated against anti-analysis measures implies that
LibIHT could be particularly useful in malware analysis pipelines,
where stealth is paramount. By shifting the tracing to hardware
and kernel space, we significantly lower the “interference profile”
of the analysis tool, which is a new point in the design space for
program analysis tools.

Limitations. Despite these advantages, LibIHT is not without
trade-offs. One limitation is the loss of certain semantic informa-
tion - for instance, LibIHT currently logs control-flow branches
but not the associated data values or memory accesses. This means
analyses that require fine-grained data flow or taint tracking can-
not be directly supported in our framework. Another limitation is
platform dependence: our implementation relies on Intel-specific
features (LBR/BTS). While many modern CPUs have analogous
capabilities, additional engineering is required to support other
architectures (e.g., ARM’s branch record features). A further consid-
eration is that, although LibIHT ’s use of LBR/BTS resists all known
software anti-instrumentation checks, attackers could eventually
target hardware tracing directly-e.g., by overflowing the LBR buffer,
exploiting microarchitectural quirks to inject spurious branches, or
detecting MSR-access timing anomalies. Over time, such evasion
techniques could erode LibIHT ’s stealth advantage unless coun-
termeasures (e.g., randomized drain intervals or noise injection)
are adopted. We leave the exploration of such targeted attacks to
future work.
Future Work. There are several avenues to extend this work. First,
enriching trace semantics is a priority: we plan to investigate com-
bining LibIHT with lightweight instrumentation that logs selective
additional context (such as function call arguments or memory
addresses) to recover some of the lost semantic detail without rein-
troducing high overhead. Second, porting LibIHT to other platforms
(ARM, AMD processors) and evaluating it there would broaden its
applicability. Third, a deeper integration with analysis tools (like
feeding LibIHT ’s output into existing CFG recovery or taint analy-
sis frameworks) could demonstrate end-to-end use cases. Finally,
user studies or case studies (e.g., analyzing real malware samples
in the wild) would help validate LibIHT ’s effectiveness in practical
security workflows.

Another promising direction is the use of LibIHT for fuzzing.
Modern hardware-assisted fuzzers have employed Intel PT to col-
lect execution coverage efficiently, enabling large-scale exploration
of complex programs [6, 26, 30]. However, PT’s trace decoding over-
head and complexity can introduce bottlenecks in coverage-guided
fuzzing workflows. LibIHT, by offering simpler and lower-overhead
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control-flow tracing, may serve as an attractive alternative. Future
work could benchmark LibIHT against Intel PT-based fuzzers to
evaluate trade-offs in accuracy, throughput, and scalability, and to
assess whether LibIHT can expand the practicality of hardware-
assisted fuzzing in security-critical domains.

Overall, our discussion highlights that LibIHT ’s hardware-centric
approach shifts some long-standing trade-offs in dynamic analysis.
It achieves a new balance between performance, transparency, and
fidelity. While there are limitations to address, the approach opens
up a promising direction for building low-overhead, anti-evasion
program analysis tools.

6 RELATEDWORK
In this section, we provide an in-depth review of prior research
that utilizes hardware tracing features for program analysis. We
categorize the literature into two primary streams: (i) Intel PT-based
approaches and (ii) LBR/BTS-based approaches. The following dis-
cussion details the advantages and limitations of these approaches
and explains how they motivate the design of LibIHT.

6.1 Intel PT-Based Approach
Intel has emerged as a powerful mechanism for capturing fine-
grained execution information. Several tools have integrated Intel
PT into their frameworks, such as Linux Perf [16] for performance
analysis, and specialized systems for control flow integrity monitor-
ing [13, 14]. Intel PT offers high-precision, instruction-level tracing
that enables detailed reconstruction of program execution paths-a
valuable feature for debugging and reverse engineering.

Despite these strengths, Intel PT-based systems face significant
challenges. The voluminous trace data generated requires exten-
sive storage and imposes heavy computational overhead during
decoding and analysis. This high data granularity often leads to
performance bottlenecks, making real-time analysis difficult, es-
pecially on resource-constrained platforms. Although researchers
have proposed techniques such as selective tracing and data com-
pression [13, 14] to alleviate these issues, such methods frequently
introduce trade-offs that compromise trace fidelity or add complex-
ity to the analysis pipeline. Consequently, while Intel PT delivers
unmatched detail, its overhead and scalability concerns restrict its
practical applicability in scenarios requiring low-latency or contin-
uous monitoring.

6.2 LBR and BTS-Based Research
An alternative line of research has focused on leveraging the more
lightweight hardware features available inmodern processors, namely
the LBR and BTS. LBR provides a circular buffer that records the
most recent branch transitions, offering a succinct snapshot of
control-flow events. BTS extends this capability by logging branch
events into a dedicated memory buffer over a longer period. These
mechanisms naturally produce substantially less data compared to
Intel PT, thereby reducing storage and processing overhead.

Prior studies have applied LBR/BTS-based tracing across vari-
ous domains. For example, Willems et al. [29] employed LBR for
malware analysis by detecting anomalies in branch patterns, while
other works have explored its use for exploit mitigation [7, 17,
23, 32] and performance profiling [2, 19]. Although these efforts

demonstrate that processor-based tracing can effectively capture
control-flow anomalies, many existing solutions remain narrowly
focused, addressing only specific security threats or performance
issues in isolated settings. Moreover, several approaches are pre-
sented merely as proof-of-concept prototypes, lacking the robust-
ness and scalability needed for general-purpose program analysis.
Common limitations include fixed buffer sizes, constrained tracing
durations, and challenges in integrating with binary analysis tools.

LibIHT addresses these limitations by providing a unified, mod-
ular framework that integrates both LBR and BTS tracing. Unlike
prior approaches that are either tailored to specific applications or
exist solely as isolated prototypes, LibIHT offers a robust kernel-
space implementation paired with flexible user-space APIs. This
design enables efficient branch-level trace capture with low over-
head while facilitating seamless integration with diverse security
and debugging workflows. In doing so, LibIHT overcomes the is-
sues of scalability, inflexibility, and high resource consumption that
have limited earlier tools, thereby advancing the state of the art in
hardware-assisted dynamic analysis.

7 CONCLUSION
In this paper, we presented LibIHT, a hardware-assisted dynamic
analysis framework that leverages CPU branch tracing features
to achieve efficient and stealthy program tracing. LibIHT directly
addresses the limitations of software-based instrumentation: in our
experiments, it delivered order-of-magnitude performance improve-
ments and resisted a range of anti-analysis techniques, all while
accurately reconstructing program control-flow. By relocating trac-
ing into the processor and kernel, LibIHT minimizes its footprint
in the target’s execution, thereby avoiding the perturbations and
detections that plague traditional tools.

Our work contributes a novel perspective on program analy-
sis—one that exploits modern hardware capabilities to balance the
long-standing unexplored trade-off between analysis fidelity and
overhead. The positive results from LibIHT ’s evaluation suggest
that hardware-centric tracing can be a practical foundation for
building next-generation analysis tools. We believe this approach
will enable security researchers and software engineers to analyze
programs (including malware) in scenarios that were previously
too slow or too risky using conventional methods. As hardware sup-
port for tracing continues to evolve, frameworks like LibIHT can be
extended and adapted to further close the gap between transparent,
high-fidelity analysis and real-world performance constraints.
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A APPENDIX
A.1 Workload Commands for Motivating

Experiment
In Table 1, we simply measure the runtime overhead introduced
by dynamic binary instrumentation tools, we selected a set of com-
monly used coreutils programs that represent typical system
workloads, including I/O, file system metadata access, and CPU-
bound operations. Each command was chosen to be deterministic
and environment-stable.

The exact commands used in the evaluation are listed below:
• ls: ls -lah /bin > /dev/null
• dd: dd if=/dev/zero of=/dev/null bs=1M count=100
• echo: echo ’hello world’
• sort: sort < /etc/passwd > /dev/null
• wc: wc -l < /etc/passwd > /dev/null
• cat: cat /etc/passwd > /dev/null

All output from these commands was suppressed to ensure that
measurement reflected only core execution time, without terminal

https://doi.org/10.1007/978-3-030-34238-8_2
https://doi.org/10.1007/978-3-030-34238-8_2
https://doi.org/10.1145/2541940.2541973
https://doi.org/10.1145/2541940.2541973
https://doi.org/10.1145/318774.318944
https://doi.org/10.1145/318774.318944
https://doi.org/10.1145/1134760.1220164
https://www.burningcutlery.com/derek/docs/phd.pdf
https://www.burningcutlery.com/derek/docs/phd.pdf
https://doi.org/10.1145/3321705.3329828
https://doi.org/10.1145/3321705.3329828
https://doi.org/10.14722/ndss.2014.23156
https://doi.org/10.14722/ndss.2014.23156
https://doi.org/10.1145/3321705.3329819
https://doi.org/10.1145/3478520
https://doi.org/10.1145/2150976.2150992
https://doi.org/10.1145/2150976.2150992
https://doi.org/10.1145/3480463
https://doi.org/10.1145/3480463
https://doi.org/10.1145/3093336.3037716
https://doi.org/10.1145/3029806.3029830
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://docs.kernel.org/admin-guide/perf-security.html
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1145/3461648.3463853
https://doi.org/10.1145/3461648.3463853
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-606.html
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-606.html
https://doi.org/10.1145/1273442.1250746
https://doi.org/10.3390/electronics13050871
https://doi.org/10.3390/electronics13050871
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://doi.org/10.1145/2420950.2420980
https://doi.org/10.1145/2420950.2420980
https://ieeexplore.ieee.org/abstract/document/8399803/


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Changyu Zhao, Yohan Beugin, Jean-Charles Noirot Ferrand, Quinn Burke, Guancheng Li, and Patrick McDaniel

I/O interference. Each workload was run in three configurations: native, under Intel Pin (pin – <command>), and under DynamoRIO
(drrun – <command>).
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