
Joint Caching and Routing in Cache Networks with
Arbitrary Topology

Tian Xie, Sanchal Thakkar, Ting He, Patrick McDaniel, and Quinn Burke
Pennsylvania State University, University Park, PA, USA. Email: {tbx5027,sjt5721,tzh58,pdm12,qkb5007}@psu.edu

Abstract—In-network caching and flexible routing are two
of the most celebrated advantages of next generation network
infrastructures. Yet few solutions are available for jointly optimiz-
ing caching and routing that provide performance guarantees for
an arbitrary topology. We take a holistic approach towards this
fundamental problem by analyzing its complexity in all the cases
and developing polynomial-time algorithms with approximation
guarantees in important special cases. We also reveal the funda-
mental challenge in achieving guaranteed approximation in the
general case and propose an alternating optimization algorithm
with good performance and fast convergence. Our algorithms
have demonstrated superior performance in both routing cost
and congestion compared to the state-of-the-art solutions in
evaluations based on real topology and request traces.

Index Terms—cache network, joint caching and routing, un-
splittable flow problem, approximation algorithm.

I. INTRODUCTION

As two of the most well-studied topics in computer com-
munication networks, caching and routing play complementary
roles: caching brings content closer to the users, and routing
optimizes the performance of the communication paths. It is
thus natural to explore the benefits of combining these control
knobs via joint caching and routing.

While joint caching and routing applies to many network
scenarios, it is particularly relevant in next generation networks
which provide services beyond data transfer. For example,
Information-Centric Network (ICN) promises to offer perva-
sive content caching at routers [1], [2], [3], and next generation
cellular network proposes to offer content caching at various
types of base stations [4], [5], [6], [7], [8], [9]. The challenge,
however, is in solving the optimization problem designed to
jointly optimize content placement and routing, which has
received significant attention.

To this end, many tailor-made solutions have been devel-
oped for specific systems, e.g., a hierarchical IPTV system [10]
or a heterogeneous cellular network with small-cell and macro-
cell base stations [4], [5]. The hierarchical structure of these
systems offers very limited routing options involving only a
couple of hops, greatly simplifying the routing problem but
making the solutions inapplicable in general networks.

Meanwhile, few works have addressed the fundamental
problem of joint content placement and multi-hop routing in
networks with arbitrary topology. Due to the huge solution
space, existing solutions either relied on heuristics or resorted
to the generic branch-and-bound method with exponential

This work was supported by the National Science Foundation under award CNS-
1946022.

worst-case complexity [11]. Polynomial-time algorithms with
approximation guarantees were not available until recently,
when [2] proposed an approximation algorithm for minimizing
the routing cost in the underloaded regime and [11] proposed
an approximation algorithm for maximizing the number of
served requests in the overloaded regime.

In this work, we address joint caching and routing in arbi-
trary topology, with the objective of minimizing the routing
cost as in [2]. However, our work differs from [2] in that:
(i) while [2] ignored link capacity constraints, we consider
both limited and unlimited link capacities, where the limited
link capacities significantly complicate the routing problem;
(ii) while [2] only optimized routing among a limited set
of candidate paths (e.g., k-shortest paths to origin servers),
we (effectively) optimize routing among all possible paths
while maintaining a polynomial complexity. As shown later
(Section V), these differences allow our solutions to achieve
substantially lower routing cost and link congestion.

A. Related Work
As caching and routing were each studied extensively with

large numbers of related works, we will only review works
addressing their joint optimization below.

Joint caching and routing: The problem of joint caching
and routing has been studied in a number of network scenarios:
ICN [1], [2], [3], Content Delivery Network (CDN) [12], [13],
[14], content provider networks [10], [15], cellular networks
[4], [5], [6], [7], [8], [9], and IoT networks [11]. Majority of
existing works focused on specific topologies, e.g., a 3-tier
hierarchical topology [10], [8], [7], or a 2-tier hierarchical
topology [4], [5], [6]. These special topologies have very
limited routing options, thus simplifying the problem.

Among works considering general network topology, only a
few provided performance guarantees [2], [11], [9]. However,
[9], [2] did not consider link capacity constraints, which
greatly simplifies the routing problem as it suffices to route
each request to the nearest replica of the requested content.
While [11] considered link capacity constraints, it assumed
an overloaded regime where not all requests can be served,
and focused on maximizing the number of served requests.
In contrast, we consider routing cost minimization in the
underloaded regime as in [2], which represents the normal
operation state of most networked systems, but we tackle a
much more general problem than [2] and also improve it in
the special case of unlimited link capacities.

Other related joint optimizations: Besides caching and
routing, other joint optimizations have also been studied,

e.g., joint cache deployment, request routing, and content
placement [13]. The content placement problem is also similar
to the placement of virtual network functions, which is usually
jointly optimized with routing [16], [17]. However, due to
the high complexity of these problems, existing solutions are
mostly based on heuristics. The few existing solutions that pro-
vide performance guarantees [18], [19], [20] address optimiza-
tion problems that are very different from ours, and are thus
not comparable with our work. Specifically, [18] optimized re-
quest rates and content placement, but assumed predetermined
routes; [19] optimized VM allocation, content placement, and
request routing, but ignored link capacities; [20] optimized
request routing and content retention time, but only provided
performance bounds in the case of uncapacitated caches.

B. Summary of Contributions

Our contributions are summarized as follows:
1) We formulate the problem of joint caching and routing as

a comprehensive optimization that minimizes the total routing
cost under linear constraints, which covers both simple content
replication (integral caching) with single-path routing (integral
routing) and caching fractions of coded content (fractional
caching) with multi-path routing (fractional routing).

2) We analyze the complexity of the optimization in all the
cases through connections to known NP-hard problems.

3) We develop efficient algorithms, with focus on the hardest
case of integral caching and integral routing. In the special
case of unlimited link capacities as considered in [2], we
develop a polynomial-time algorithm that achieves a constant
approximation in maximizing the cost saving due to caching.
In another special case of binary cache capacities, we reduce
our problem to the minimum-cost single-source unsplittable
flow problem (MSUFP) and develop a polynomial-time bicri-
teria approximation algorithm that improves the state of the art
for MSUFP when individual demands are much smaller than
link capacities. We then apply the ideas from these special
cases to develop a heuristic algorithm for the general case
that alternatingly optimizes caching and routing.

4) We evaluate our solutions against state-of-the-art bench-
marks in the common application scenario of edge caching.
Our results based on real topology and request traces show
that: (i) when given perfect knowledge of the demand, our
algorithms can significantly improve the state-of-the-art so-
lutions in both routing cost and congestion, and (ii) the
advantage is preserved when our algorithms are based on
predicted demand produced by a realistic prediction method.

Roadmap. Section II formulates our optimization problem,
Section III analyzes its complexity, Section IV presents our
algorithms and approximation analysis, Section V provides
evaluation results, and finally Section VI concludes the paper.
All the proofs can be found in Appendix.

II. PROBLEM FORMULATION

A. Network Model

We model the cache network as a directed graph G =
(V,E), where V is the set of nodes, and E the set of links.

Collectively, the nodes serve a catalog C of content items (e.g.,
data chunks). As common in the literature [2], [11], [18], we
assume the content items to be of equal size, which represent
fixed-size chunks constituting data files. To serve the content,
each node v is equipped with a cache, which can store up to
cv content items (cv = 0 if v has no cache). A node that does
not store a content item can request it from other nodes. Each
link (u, v) ∈ E can transfer cuv content items per unit time
(assuming that the size of a request is negligible). We model
each type of requests by a pair (i, s) ∈ C × V , meaning that
“node s requests content item i”. Let R ⊆ C × V denote the
set of all types of requests, and λ(i,s) (unit: requests per unit
time) denote the arrival rate of requests of type (i, s).

In this work, we consider the underloaded regime, i.e., all
the requests can be satisfied. This regime represents the normal
operation scenario (assuming suitable capacity planning). In
contrast to the overloaded regime where the focus is on
serving as many requests as possible [11], there are generally
multiple ways to place and route content items to satisfy all the
requests in the underloaded regime, so the focus is typically
on finding a feasible solution that minimizes the total routing
cost [2]. To this end, we associate each link (u, v) ∈ E
with a routing cost wuv ≥ 0 (wuv may not equal wvu),
denoting the cost of transferring a content item over this link.
The routing cost can model any additive performance metric.
For example, if wuv denotes delay, then minimizing the total
routing cost minimizes the average content access delay; if
wuv denotes − log(link reliability), then under the assumption
of independent link failures, minimizing the total routing
cost minimizes the average of − log(path reliability), which
maximizes the success rate of content retrieval. The specific
choice of routing costs is not our focus; instead, our focus
is on designing the caching strategy and the routing strategy
based on a given cost per link such that the total routing cost
can be minimized subject to the above resource constraints.

B. Model of Caching

We use xvi to denote the caching decision regarding storing
content item i at node v. If a content item can only be
replicated as a whole, we require integral caching xvi ∈ {0, 1}
(1: storing the item, 0: not storing the item). If a cache can
store (a coded version of) a fraction of an item, we allow
fractional caching xvi ∈ [0, 1]. For example, using random
linear code, we can divide each item into small sub-chunks and
store linear combinations of these sub-chunks at caches such
that the original item can be recovered with high probability as
long as sufficiently many coded sub-chunks are retrieved [21],
where xvi denotes the fraction of coded sub-chunks for content
item i that are stored at node v. Other coding schemes such
as MDS rateless codes [22] can also be used.

C. Model of Routing

Due to the possibility of multiple nodes storing a requested
item, the routing decision contains both source selection
that selects the source(s) to retrieve the content from, and
routing that selects the path(s) to retrieve the content through.
Depending on how items are cached, we may require integral

2

source selection r(i,s)v ∈ {0, 1}, where r(i,s)v = 1 indicates that
v is selected as the only source for serving request (i, s), or
we may allow fractional source selection r(i,s)v ∈ [0, 1], where
r
(i,s)
v is the fraction of item i served from node v to node
s. Depending on whether multi-path routing is supported, we
may require integral routing f (i,s)uv ∈ {0, 1}, where f (i,s)uv = 1
indicates that link (u, v) is on the only path serving request
(i, s), or we may allow fractional routing f (i,s)uv ∈ [0, 1], where
f
(i,s)
uv is the fraction of the flow serving request (i, s) that

traverses link (u, v).

D. Problem: Optimal Joint Caching and Routing

We now formally define the joint caching and routing
problem we want to solve in the form of an optimization:

min
f ,x,r

∑
(i,s)∈R

λ(i,s)
∑

(u,v)∈E

wuvf
(i,s)
uv (1a)

s.t.
∑

(i,s)∈R

λ(i,s)f
(i,s)
uv ≤ cuv, ∀(u, v) ∈ E, (1b)

∑
w:(u,w)∈E

f (i,s)uw −
∑

w:(w,u)∈E

f (i,s)wu = r(i,s)u − 1u=s,

∀(i, s) ∈ R, u ∈ V, (1c)∑
u∈V

r(i,s)u = 1, ∀(i, s) ∈ R, (1d)

r(i,s)v ≤ xvi, ∀(i, s) ∈ R, v ∈ V, (1e)∑
i∈C

xvi ≤ cv, ∀v ∈ V, (1f)

xvi ∈
{
{0, 1} if integral caching,
[0, 1] if fractional caching, ∀v ∈ V, i ∈ C,

(1g)

f (i,s)uv , r(i,s)v ∈
{
{0, 1} if integral routing,
[0, 1] if fractional routing,
∀(i, s) ∈ R, (u, v) ∈ E, v ∈ V. (1h)

The decision variables are f := (f
(i,s)
uv)(i,s)∈R,(u,v)∈E

(routing), x := (xvi)v∈V,i∈C (caching), and r :=

(r
(i,s)
v)(i,s)∈R,v∈V (source selection).
The objective (1a) is to minimize the total routing cost (per

unit time). Constraints (1b) and (1c) are the link capacity and
the flow conservation constraints as in the multicommodity
flow problem. In our context, each commodity (i, s) represents
the responses to requests of type (i, s), and r

(i,s)
u − 1u=s

is the fraction of commodity (i, s) emitted from node u (1·
denotes the indicator function). Constraint (1d) ensures that
each request is served by sufficient sources, and constraint (1e)
ensures that each selected source stores (a sufficient fraction
of) the requested content. Constraint (1f) models the cache
capacity constraint at each node.

Based on the choices in constraints (1g) and (1h), (1) models
the joint optimization of caching and routing in three cases:
1) fractional caching and fractional routing (FC-FR),
2) integral caching and fractional routing (IC-FR), and
3) integral caching and integral routing (IC-IR).

IC-IR:
NP-hard

IC-FR:
NP-hard

FC-FR: P

Fig. 1. Complexity analysis for the joint caching and routing problem (1).

Note that integral routing implies integral source selection, as
modeled by (1c). In theory, there is a fourth case, fractional
caching and integral routing (FC-IR). However, under integral
routing, the source selection must also be integral, which
means that there is no value for caching partial content items.
Therefore, there must be an optimal solution for FC-IR that is
feasible (and optimal) for IC-IR, and thus it suffices to consider
the above three cases.

Clearly, IC-IR is the most constrained case with the worst
routing cost (under the optimal solution) among the three
cases, but it also has the least requirement on implementa-
tion, by storing uncoded content and performing single-path
routing. Meanwhile, FC-FR is the least constrained case with
the best routing cost, but its solution is the most complicated to
implement, requiring content encoding/decoding and support
of multi-path routing. It is thus of interest to investigate all
three cases to understand the tradeoff among computational
complexity, routing cost, and implementation requirements.

III. COMPLEXITY ANALYSIS

The optimization (1) is a linear programming (LP), integer
linear programming (ILP), or mixed integer linear program-
ming (MILP) problem, depending on the choices in constraints
(1g) and (1h)). We start by analyzing the complexity in solving
(1) optimally in various cases.

Complexity of IC-IR: It is easy to see that the optimization
(1) incorporates the multicommodity flow problem as a sub-
problem, as even if the optimal caching and source selection
decision (x, r) is given, the remaining problem is still a
multicommodity flow problem. Specifically, each commodity
corresponds to a type of request (i, s), with a source v such
that r(i,s)v = 1, a destination s, and a demand λ(i,s), and we
need to find a single path for each commodity such that all
the demands can be satisfied at the minimum cost within the
link capacities, which is the minimum-cost unsplittable flow
problem that is NP-hard [23], [24]. Therefore, (1) under IC-
IR is NP-hard.

Complexity of IC-FR: It has been shown that integral
caching is already NP-hard. Specifically, in the special case
of cuv = ∞ (∀(u, v) ∈ E), (1) reduces to the MinCost-
SR problem in [2], which is known to be NP-hard due to a
reduction from the 2-Disjoint Set Cover Problem. Therefore,
(1) under IC-FR remains NP-hard.

Complexity of FC-FR: In this case, (1) becomes an LP,
which is polynomial-time solvable by existing LP algorithms
(e.g., Karmarkar’s algorithm [25]).

Summary: Fig. 1 summarizes the complexity of the joint
caching and routing problem (1) in all the cases. Except for
the case of FC-FR, the problem is always NP-hard, which
motivates our search for efficient approximation algorithms.

3

IV. ALGORITHM DESIGN

We now study efficient algorithms for solving (1) approx-
imately. Since FC-FR is polynomial-time solvable, we will
focus on the cases of integral caching and/or integral routing.

A. Approximation under Unlimited Link Capacities

If the network is lightly loaded, i.e., each link has suffi-
cient capacity to serve all the demands (

∑
(i,s)∈R λ(i,s) ≤

min(u,v)∈E cuv), then the routing decision becomes easy.
Specifically, given the content placement in caches, we should
always serve each request (i, s) from the nearest (i.e., least-
cost) node storing the requested content. If the nearest node
only stores a fraction of (the coded sub-chunks of) the content,
then we should also retrieve from the second nearest node
storing the content and so on, until the request is fully satisfied.
This is a generalization of the route-to-nearest-replica (RNR)
strategy in ICN [2], and will be referred to as RNR in the
sequel. The focus is therefore on finding a good content
placement. As explained in Section II-D, if either routing
or caching is limited by integer constraints, then the optimal
caching solution is integral. We thus consider the problem of
finding the optimal integral content placement under RNR.

This problem has been considered in [2], which developed
a pseudo polynomial-time algorithm that achieves a constant-
factor approximation to the optimal solution. However, the al-
gorithm’s complexity is polynomial in the total number of pos-
sible routing paths, which is generally exponential in the net-
work size1. Below, we will develop a truly polynomial-time al-
gorithm that achieves the same constant-factor approximation.

1) Equivalent Formulation: The key in circumventing the
high complexity for considering all possible paths is to recog-
nize that only the least-cost paths between nodes may be used
under the optimal solution. Let wv→s denote the minimum
routing cost from node v to node s, and wmax be an upper
bound on the maximum wv→s over all v, s ∈ V . It is well-
known that (wv→s)v,s∈V and the associated paths can be
computed in polynomial time by shortest path algorithms (e.g.,
Dijkstra). Given a content placement x and a source selection
r, we define a proxy objective function:

CRNR(x, r) :=
∑

(i,s)∈R

λ(i,s)
∑
v∈V

r(i,s)v (xviwv→s+(1−xvi)wmax),

based on which we formulate the following optimization:

min
x,r

CRNR(x, r) (2a)

s.t.
∑
v∈V

r(i,s)v = 1, ∀(i, s) ∈ R, (2b)∑
i∈C

xvi ≤ cv, ∀v ∈ V, (2c)

xvi, r
(i,s)
v ∈ {0, 1}, ∀v ∈ V, (i, s) ∈ R. (2d)

As requesting content item i from a node v not storing it (i.e.,
xvi = 0) will incur a large cost wmax, the optimal solution to r

1The issue was addressed in [2] by heuristically selecting a polynomial
number of candidate paths (e.g., k shortest paths to the server), but the loss
of optimality due to ignoring the other possible paths was not addressed.

must only select the source for each request among the nodes
storing the requested content, and must select the source with
the least routing cost to the requester (i.e., RNR). Thus, the
optimal solution to (2) will minimize the cost in serving all
the requests (due to (2b)) subject to cache capacity constraints
(2c) and integer constraints (2d), which makes (2) a special
case of (1) under IC-IR when cuv =∞ (∀(u, v) ∈ E).

Next, we convert the problem into an equivalent maximiza-
tion problem. Define a complementary objective function

FRNR(x, r) := C
(0)
RNR − CRNR(x, r) (3)

that represents the “cost saving” due to content
placement x and source selection r, where
C

(0)
RNR := |V |wmax

∑
(i,s)∈R λ(i,s) is a constant. It is easy to

see that minimizing CRNR(x, r) is equivalent to maximizing
FRNR(x, r). As will be shown below, the maximization
problem accepts a constant-factor approximation.

2) Submodularity of Objective: As an explanation of why
the maximization of FRNR(x, r) is easier to solve, we will
show that FRNR can be written as a monotone submodular
function [26] of content placement. To this end, we rewrite
FRNR as a set function: for any X ⊆ V × C,

F̃RNR(X) := max
r s.t. (2b),(2d)

FRNR(x, r), (4)

where xvi = 1 if (v, i) ∈ X and xvi = 0 otherwise (∀v ∈
V, i ∈ C). This function has the following properties.

Lemma IV.1. The function F̃RNR(X) is monotone increasing
and submodular in X .

Under the set function representation, the maximization of
FRNR(x, r) subject to (2b)–(2d) is equivalent to

max
X⊆V×C

F̃RNR(X) (5a)

s.t. |{i ∈ C : (v, i) ∈ X}| ≤ cv, ∀v ∈ V, (5b)

where the optimization of r has been incorporated into
F̃RNR(X). It is easy to see that the cache capacity constraint
(5b) is a matroid constraint [26].

There are generic polynomial-time approximation
algorithms for maximizing a monotone submodular function
under matroid constraints. Specifically, the greedy algorithm
of iteratively expanding the set X by adding an element (v, i)
that maximally increases the objective value achieves a 1/2-
approximation [27]. A better approximation ratio of (1−1/e)
is achieved by the randomized algorithm in [26], which
cannot be further improved under the value oracle model [28].
However, this randomized algorithm has a complexity of
O(n8) where n is the rank of the matroid [26]. In our case,
n =

∑
v∈V cv (total cache capacity), which can be large,

making this generic algorithm computationally expensive.
Remark: Contrary to the claim in [2] that jointly optimizing

caching and routing decisions is not a submodular maximiza-
tion problem subject to matroid constraints, we have proved
that under proper formulation (i.e., (5)), the problem is a
submodular maximization problem under matroid constraints.
Note that our problem is equivalent to the (offline) joint

4

caching and routing problem in [2] in that the optimal content
placement according to (5) together with RNR solves the joint
caching and routing problem in [2] optimally.

3) Approximation Algorithm: Below, we will develop a
tailor-made algorithm for maximizing FRNR(x, r) subject to
(2b)–(2d) that achieves the same approximation ratio as the
generic algorithm in [26] at a much lower complexity. The
idea is to use pipage rounding [29]. Generally, to apply
pipage rounding, we need to answer two questions: (i) how
to efficiently compute a fractional solution that achieves a
guaranteed approximation to the optimal, and (ii) how to round
the fractional solution to an integral solution without degrading
the objective value. We now answer these questions in detail.

Auxiliary LP: We compute a fractional approximate solution
by replacing the non-concave objective function FRNR(x, r) by
a concave function that is easier to maximize.

Lemma IV.2. For any x and r satisfying xvi, r
(i,s)
v ∈ [0, 1]

(∀v ∈ V, i ∈ C, (i, s) ∈ R), (1 − 1/e)LRNR(x, r) ≤
FRNR(x, r) ≤ LRNR(x, r), where

LRNR(x, r) :=
∑

(i,s)∈R

λ(i,s)
∑
v∈V

wmax

·min

(
1, 1− r(i,s)v +

xvi(wmax − wv→s)
wmax

)
. (6)

The new objective function LRNR(x, r) is concave and
piecewise linear. By introducing an auxiliary variable z(i,s)v ,
we can formulate the maximization of LRNR(x, r) subject to
(2b), (2c), and the relaxation of (2d) as an LP:

max
x,r,z

∑
(i,s)∈R

λ(i,s)
∑
v∈V

wmaxz
(i,s)
v (7a)

s.t. z(i,s)v ≤ 1, ∀(i, s) ∈ R, v ∈ V, (7b)

z(i,s)v ≤ 1− r(i,s)v +
xvi(wmax − wv→s)

wmax
,

∀(i, s) ∈ R, v ∈ V, (7c)
(2b), (2c), (7d)

xvi, r
(i,s)
v ∈ [0, 1], ∀v ∈ V, (i, s) ∈ R. (7e)

Due to the maximization and the constraints (7b)–(7c), z(i,s)v

must equal min
(

1, 1− r(i,s)v + xvi(wmax−wv→s)
wmax

)
under the

optimal solution, making the objective function (7a) equal to
LRNR(x, r). As an LP, (7) is polynomial-time solvable. Solving
(7) gives a fractional solution (x̃, r̃) that maximizes LRNR and
hence achieves a (1−1/e)-approximation in maximizing FRNR

by Lemma IV.2.
Pipage rounding: Given the fractional solution (x̃, r̃), we

round it to an integral solution while preserving FRNR by
repeating the following step: As long as ∃x̃vi, x̃vj ∈ (0, 1),
we will update their values by

xvi = min(1, x̃vi + x̃vj), xvj = x̃vi + x̃vj − xvi (8)

if
∑
s:(i,s)∈R λ(i,s)r̃

(i,s)
v (wmax − wv→s) ≥∑

s:(j,s)∈R λ(j,s)r̃
(j,s)
v (wmax − wv→s), and

xvj = min(1, x̃vi + x̃vj), xvi = x̃vi + x̃vj − xvj (9)

Algorithm 1: Integral Caching and Source Selection
under RNR

input : Network topology G = (V,E), link costs
(wuv)(u,v)∈E , cache capacities (cv)v∈V , content
catalog C, request rates (λ(i,s))(i,s)∈R

output: Integral caching decision x and source selection r
1 compute pairwise least costs (wv→s)v,s∈V and the

maximum pairwise cost wmax;
2 solve the LP (7) for a fractional solution (x̃, r̃);
3 round x̃ to an integral solution x by (8)–(9);
4 compute an integral r based on x using RNR;

otherwise. This rounding scheme has the following property.

Lemma IV.3. Given a possibly fractional solution (x̃, r̃)
satisfying (2b), (2c), and (7e), repeatedly applying (8)–(9)
will construct an integral solution x in O(|V |2|C|) time that
satisfies (2c), (2d), and FRNR(x, r̃) ≥ FRNR(x̃, r̃).

Proposed algorithm: The entire algorithm is summarized
in Algorithm 1, where line 1 prepares parameters for the
auxiliary LP (7), line 2 solves the LP for a fractional solution,
line 3 applies pipage rounding, and line 4 computes the
corresponding source selection by serving each request from
the nearest node storing the requested content, i.e., RNR. The
performance of Algorithm 1 is guaranteed as follows.

Theorem IV.4. Algorithm 1 has a complexity of O(|V ||E|+
|R|2.5|V |2.5) and produces a feasible solution (x, r) such that
FRNR(x, r) ≥ (1 − 1/e)FRNR(x∗, r∗), where (x∗, r∗) is the
optimal solution to (2).

Remark: Although a similar approach was taken in [2], the
solution therein enumerates candidate paths and thus can only
consider a subset of all possible paths to achieve a polynomial
complexity. In contrast, our algorithm effectively optimizes
over all possible paths (while maintaining a polynomial com-
plexity), and can thus significantly outperform [2] (see Fig. 5).

4) A Special Case: Consider now the special case where a
subset U of nodes are pure requesters (not caching anything),
and another subset H of nodes are pure caches (not requesting
anything). In this case, it suffices to model the network as
a bipartite graph G̃ = (H,U, Ẽ), where the logical link
(h, u) ∈ Ẽ represents the least-cost path from h to u, with
cost wh→u. We can ignore how these least-cost paths traverse
the underlying network as the links have unlimited capacities.

This reduces our problem to the FemtoCaching problem in
wireless networks [22], where nodes generating requests are
one-hop away from caches deployed at the network edge. In
the further special case where except for one node h0 ∈ H
(that denotes the origin server), all the cache→requester paths
have equal cost w1 with w1 < minu∈U wh0→u, [22] developed
a pipage-rounding-based algorithm with an approximation
ratio of2 (1 − 1/e), and a complexity similar to solving an
LP with (|U | + |H|)|C| variables and constraints. In this
sense, we have shown that the same performance guarantee
can be achieved for a general cache network with arbitrary

2The precise approximation ratio is 1 − (1 − 1
d
)d, where d :=

maxu∈U deg(u)− 1 [22], which converges to 1− 1/e as d gets large.

5

𝑣𝑠 (virtual source)

𝑣 ∈ 𝑉𝑠
𝑣 ∈ 𝑉\𝑉𝑠

real link virtual link

Fig. 2. Auxiliary graph G′ that augments G by adding a virtual source vs
connected to all real sources in Vs.

routing costs, as long as the links are uncapacitated. The
cost we pay for such generality is complexity: instead of
solving an LP with (|U | + |H|)|C| = O(|V ||C|) variables
and constraints as in [22], Algorithm 1 needs to solve an LP
with O(|V ||R|) = O(|V |2|C|) variables and constraints.

B. Bicriteria Approximation under Binary Cache Capacities

We see from Section IV-A that the routing decision becomes
trivial (i.e., RNR) when the link capacity constraints are
removed. We now consider another special case where the
caching decision becomes trivial. Specifically, suppose that
cv = |C| for v ∈ Vs ⊂ V , and cv = 0 for the rest. Then each
node v ∈ Vs will store the entire catalog and each v ∈ V \ Vs
will store nothing. This models scenarios with predetermined,
geographically distributed backup servers (i.e., in CDNs).

1) Equivalent Formulation: We will show that in this case,
the joint optimization of source selection and routing is equiv-
alent to a single-source routing problem in an auxiliary graph.
Consider the auxiliary graph G′ that is constructed by adding
to G a new node vs and a new link (vs, v) for every v ∈ Vs,
as illustrated in Fig. 2. We will refer to vs as the virtual source
and (vs, v) as a virtual link. Let E′ := E∪{(vs, v) : v ∈ Vs}
denote the link set for G′. Assign to each virtual link a zero
cost and an unlimited capacity. Then our problem is equivalent
to a single-source routing problem in G′ as stated below.

Lemma IV.5. Under the content placement xvi = 1 for all
v ∈ Vs, i ∈ C and xvi = 0 otherwise, minimizing the cost in
serving all the requests in G by optimizing source selection r
and routing f is equivalent to minimizing the cost in serving
the same requests in G′ by optimizing the routing f ′ from vs
to content requesters.

2) Bicriteria Approximation Algorithms: Under fractional
routing (which implies fractional source selection) in G, the
corresponding single-source routing problem in G′ is easily
solvable by an LP (e.g., the LP relaxation of (10)). Hence,
we focus on the case of integral routing (and integral source
selection), in which case the corresponding single-source
routing problem in G′ is:

min
f ′

∑
(i,s)∈R

λ(i,s)
∑

(u,v)∈E

wuvf
′(i,s)
uv (10a)

s.t.
∑

(i,s)∈R

λ(i,s)f
′(i,s)
uv ≤ cuv, ∀(u, v) ∈ E, (10b)

∑
w:(u,w)∈E

f ′
(i,s)
uw −

∑
w:(w,u)∈E

f ′
(i,s)
wu = 1u∈Vs

f ′
(i,s)
vsu − 1u=s,

∀(i, s) ∈ R, u ∈ V, (10c)∑
v∈Vs

f ′
(i,s)
vsv = 1, ∀(i, s) ∈ R, (10d)

f ′
(i,s)
uv ∈ {0, 1}, ∀(i, s) ∈ R, (u, v) ∈ E′, (10e)

known as the minimum-cost single-source unsplittable flow
problem (MSUFP) [30]. Under the conversion of f (i,s)uv =

f ′
(i,s)
uv for all (i, s) ∈ R and (u, v) ∈ E, and r

(i,s)
v = f ′

(i,s)
vsv

for all (i, s) ∈ R and v ∈ Vs, it is easy to see that (10) is a
special case of (1) under integral routing, when cv = |C| for
all v ∈ Vs and cv = 0 for all v ∈ V \ Vs.

For ease of presentation, we define MSUFP using simpler
notations as follows.

Definition 1. Given a graph G = (V,E) with capacity ce and
cost we associated with each link e ∈ E, and commodities
i = 1, . . . , n, each with source s, destination di, and demand
λi, MSUFP aims at finding an unsplittable flow satisfying all
the demands within the link capacities at the minimum cost,
i.e., a set of paths {pi}ni=1 such that routing commodity i
on pi satisfies the demands while satisfying

∑
i:e∈pi λi ≤ ce

(∀e ∈ E), and achieves the minimum cost measured by∑n
i=1 λi

∑
e∈pi we among all the feasible solutions.

MSUFP is NP-hard [23]. Notable efforts have been devoted
to designing approximation algorithms, which generally start
from an initial splittable flow f̃ (i.e., fractional routing) and
then round it into an unsplittable flow f . It has been shown
in [31] that in the worst case, rounding a splittable flow that
satisfies the link capacity constraints into an unsplittable flow
will violate the capacity of some link by an amount arbitrarily
close to the maximum demand. Therefore, existing algorithms
focus on obtaining bicriteria approximation defined as follows.

Definition 2. A solution f to MSUFP is a bicriteria (α, β)-
approximation if: (i) the total load on each link imposed by f
is within α times its capacity, and (ii) the total cost incurred
by f is within β times the optimal cost.

Despite extensive studies, existing results on MSUFP are
far from satisfactory. Under arbitrary demand, the best known
bicriteria approximation ratio is (3 + 2

√
2, 1) [30]. If the

maximum demand is within the minimum link capacity, the
best known ratio is (3, 1) [30]; under the same condition, [32]
proved that for any ε > 0, there is no bicriteria (2 − ε, 1)-
approximation algorithm for MSUFP unless P = NP . These
results imply that if we use the algorithms therein to solve
(10), some link may carry a load that is three times its capacity,
which will cause significant congestion.

To address this issue, we will show a better approxi-
mation algorithm in the scenario where the maximum de-
mand is much smaller than the minimum link capacity, i.e.,
maxi∈{1,...,n} λi =: λmax � cmin := mine∈E ce. This sce-
nario models cases where the network serves a large number
of users with a large catalog, but each user only has a small
demand for each item in the catalog. In this case, we will
provide a polynomial-time algorithm that achieves no more

6

than the optimal cost, while causing no more than ε congestion
on each link for an arbitrarily small ε > 0.

Subroutine: The basis of our solution is an algorithm devel-
oped in [30], which converts a splittable flow to an unsplittable
flow with the following properties.

Lemma IV.6 ([30]). Given MSUFP with demands λi =
λmin2qi (i = 1, . . . , n) for qi ∈ N (natural numbers including
zero) and 0 = q1 ≤ q2 ≤ · · · ≤ qn, and a splittable flow
f satisfying all the demands, [30, Algorithm 2] outputs an
unsplittable flow that routes each commodity i on a single
path pi in O(n|V | + |E|qn + |V ||E|) time, such that (i)∑n
i=1 λi

∑
e∈pi we is no more than the cost of f , and (ii)

∀e ∈ E, if ie := arg maxi:e∈pi λi, then
∑
i6=ie:e∈pi λi < f(e),

the total flow on link e under f .

Proposed algorithm: Using [30, Algorithm 2] as a subrou-
tine, we develop a three-step algorithm for arbitrary demands
(λi)

n
i=1 in Algorithm 2. First, we compute by LP an optimal

splittable flow f that satisfies these demands within the link
capacities with the minimum cost (line 1). Second, using a
given parameter K ∈ N, we round each demand λi to3

λ̄i :=

{
λmax2bK log(λi/λmax)c/K if λi < λmax,
λmax/2

1/K if λi = λmax.
(11)

The rounded demand satisfies λi2−1/K ≤ λ̄i ≤ λi. We then
reduce the flow f along the most expensive paths to a new
splittable flow f̄ satisfying demands (λ̄i)

n
i=1 (lines 2–4). Third,

we partition the commodities {1, . . . , n} into K subsets:

Sj := {i ∈ {1, . . . , n} : −bK log(λi/λmax)c
K

+
j

K
∈ N},

j = 0, . . . ,K − 1. (12)

We then split f̄ into flows f̄j (j = 0, . . . ,K − 1) such that
f̄j satisfies demands (λ̄i)i∈Sj

(line 5), and convert f̄j into
an unsplittable flow by [30, Algorithm 2], which routes each
commodity i (i ∈ Sj) on a path pi (lines 6–7). The final
solution is to route the original demand λi on path pi for each
i = 1, . . . , n (line 8).

The performance of Algorithm 2 is guaranteed as follows.

Theorem IV.7. Given MSUFP with demands λmin := λ1 ≤
· · · ≤ λn =: λmax, Algorithm 2 computes an unsplittable
flow that serves demand λi by path pi (i = 1, . . . , n)
in O

(
n2.5(|V |+ |E|)2.5 +K|E|

(
log(λmax

λmin
) + |V |

))
time,

such that (i)
∑n
i=1 λi

∑
e∈pi we is no more than the minimum

cost, and (ii)
∑
i:e∈pi λi <

21/K

2(21/K−1)λmax + 21/Kce, ∀e ∈ E.

Remark: Algorithm 2 extends the solution in [30] (called
variant of Algorithm 3), which addressed a special case of
K = 2. When λmax � cmin, choosing K = d1/ log(1+ε)e for
a small ε > 0 implies that the solution given by Algorithm 2
will achieve the optimal cost while incurring a load on each
link that is within (1 + ε) times its capacity, i.e., giving a
bicriteria (1 + ε, 1)-approximation. Applying this algorithm
to (10) will then give an integral source selection and routing

3The log here denotes base-2 logarithm.

Algorithm 2: Bicriteria Approximation for MSUFP
input : Network topology G = (V,E), link costs (we)e∈E ,

link capacities (ce)e∈E , commodities i ∈ {1, . . . , n}
with source s, destination di, and demand λi, and
design parameter K ∈ N

output: Paths (pi)
n
i=1, each for routing one commodity

1 compute a feasible splittable flow f := ((f
(i)
e)e∈E)ni=1 that

satisfies all the demands (λi)
n
i=1 at the minimum cost;

2 convert the link-level flow f to a path-level flow
((f

(i)
p)p∈Pi)

n
i=1 by the Edmonds-Karp algorithm as in [33],

where Pi is the set of paths carrying commodity i and f (i)
p

the amount of commodity i on path p ∈ Pi;
3 foreach i = 1, . . . , n do
4 reduce (f

(i)
p)p∈Pi in descending order of

∑
e∈p we until

the reduced flow satisfies
∑

p∈Pi
f̄
(i)
p = λ̄i as in (11);

5 split the reduced flow f̄ into f̄j := ((f̄
(i)
p)p∈Pi)i∈Sj

(j = 0, . . . ,K − 1) for Sj defined in (12);
6 foreach j = 0, . . . ,K − 1 do
7 convert f̄j into an unsplittable flow by [30,

Algorithm 2], specified by paths (pi)i∈Sj ;
8 return paths (pi)

n
i=1, with pi serving demand λi;

solution to (1) when the catalog is replicated over a given
subset of nodes Vs, which incurs no more than the optimal cost
and exceeds the capacity of any link by at most a factor of ε.

While the case of λmax � cmin was considered in [34],
which proposed a different algorithm, the performance of that
algorithm was not analyzed rigorously. To our knowledge,
Algorithm 2 is the first algorithm achieving (1 + ε, 1)-
approximation for MSUFP.

C. Heuristics under General Link/Cache Capacities

In the general case with arbitrary link/cache capacities, we
alternatingly optimize content placement and routing (includ-
ing source selection), based on experiences gained in studying
the special cases.

1) Approximation Algorithm for Content Placement: Con-
sider the problem of integral content placement under a given
solution (r, f) to source selection and routing. In the case
of integral routing, this problem has been studied in [35], for
which a (1 − 1/e)-approximation algorithm based on pipage
rounding was proposed. Below we show how to achieve the
same approximation ratio in the case of fractional routing.

Under source selection r and routing f , let P (i,s)
r,f denote

the set of cycle-free paths used to serve requests of type (i, s)

and λ(i,s)p (∀p ∈ P (i,s)
r,f) the rate of requests served by path p.

Specifically, given a possibly fractional link-level routing deci-
sion f := (f

(i,s)
uv)(i,s)∈R,(u,v)∈E , the corresponding path-level

routing decision
(

(f
(i,s)
p)

p∈P (i,s)
r,f

)
(i,s)∈R

can be computed as

in [33] in O(|R||V ||E|) time (f (i,s)p : the fraction of type-(i, s)
requests served by path p), and then λ(i,s)p = λ(i,s)f

(i,s)
p . This

conversion also guarantees that |P (i,s)
r,f | ≤ |E| (∀(i, s) ∈ R)

(see the proof of Theorem IV.7 for explanation). Let |p| denote
the number of nodes on path p and pi (i = 1, . . . , |p|) the i-th
node from the source. Then the cost of serving requests using

7

the paths and rate allocation specified by (r,f) and an integral
content placement x is

Cr,f (x) :=
∑

(i,s)∈R

∑
p∈P (i,s)

r,f

λ(i,s)p

|p|−1∑
k=1

wp|p|−kp|p|−k+1

·
k−1∏
k′=0

(1− xp|p|−k′ i), (13)

because the response to request (i, s) along path p needs to
traverse link (p|p|−k, p|p|−k+1) if and only if no node closer
to the requester (at node p|p|) than node p|p|−k has content i,
i.e.,

∏k−1
k′=0(1− xp|p|−k′ i) = 1. This is a generalization of the

formulation in [35], which only considers the special case of
|P (i,s)

r,f | = 1 (i.e., integral routing). Note that to be consistent
with previous sections, we consider each p ∈ P (i,s)

r,f to be a
response path, instead of a request path as in [35].

The solution is based on similar ideas as in Algorithm 1.
First, the minimization of cost (13) is converted into an
equivalent maximization of cost saving, defined as

Fr,f (x) := Cr,f (0)− Cr,f (x)

=
∑

(i,s)∈R

∑
p∈P (i,s)

r,f

λ(i,s)p

|p|−1∑
k=1

wp|p|−kp|p|−k+1

·

(
1−

k−1∏
k′=0

(1− xp|p|−k′ i)

)
. (14)

Second, the nonconcave objective function (14) is replaced by
a piecewise-linear concave objective function:

Lr,f (x) :=
∑

(i,s)∈R

∑
p∈P (i,s)

r,f

λ(i,s)p

|p|−1∑
k=1

wp|p|−kp|p|−k+1

·min

(
1,

k−1∑
k′=0

xp|p|−k′ i

)
, (15)

which can be shown to satisfy (1−1/e)Lr,f (x) ≤ Fr,f (x) ≤
Lr,f (x) by applying the Goemans-Williamson inequality [36],
[35] as in Lemma IV.2. Using auxiliary variables to represent
min

(
1,
∑k−1
k′=0 xp|p|−k′ i

)
as in (7), the maximization of (15)

under cache capacity constraints and xvi ∈ [0, 1] (∀v ∈ V, i ∈
C) can be written as an LP and solved efficiently. Finally, if
the solution x̃ is fractional, then a pipage rounding scheme
similar to (8)–(9) can be used to round it into an integral
solution x such that Fr,f (x) ≥ Fr,f (x̃).

Together, these steps produce an integral content placement
x that achieves (1−1/e)-approximation in terms of maximiz-
ing Fr,f . That is, compared to the content placement x∗r,f that
maximizes (14), x satisfies Fr,f (x) ≥ (1− 1/e)Fr,f (x∗r,f).

2) Algorithms for Source Selection and Routing: Given an
integral content placement x, we can reduce the joint optimiza-
tion of source selection r and routing f to a pure routing prob-
lem by a construction similar to Lemma IV.5. Specifically, let
V x
i := {v ∈ V : xvi = 1} be the set of nodes storing content

i under placement x (∀i ∈ C). We can construct an auxiliary
graph Gx := (V ∪ {vi}i∈C , E ∪

⋃
i∈C{(vi, v) : v ∈ V x

i }),
where vi is the virtual source for content i that is connected
to each of the real sources for content i via a virtual link that
has a zero cost and an unlimited capacity. Then by the same
arguments as in Lemma IV.5, we see that minimizing the total
routing cost in G by a joint optimization of source selection
and routing under content placement x is equivalent to mini-
mizing the total routing cost in Gx by optimizing the routing
from the virtual source vi of each content to its requesters.

The resulting routing problem in Gx is known as
the minimum-cost multiple-source splittable/unsplittable flow
problem (MMSFP/MMUFP) depending on whether fractional
routing is allowed. Under fractional routing, the corresponding
problem (MMSFP) can be solved via LP. If routing must be
integral, then the corresponding problem (MMUFP) is NP-
hard [24]. A number of heuristics for MMUFP, e.g., greedy
and LP relaxation with randomized rounding, have been
proposed [24]. The optimal solution can also be computed by
the branch-and-price-and-cut algorithm [37], although with an
exponential complexity.

Remark: In contrast to the bicriteria approximations for
MSUFP (see Section IV-B2), approximating MMUFP is
much harder. This is because in the single-source case, if all
demands and link capacities are integer multiples of α for any
α > 0, then we can compute in polynomial time a minimum-
cost flow whose value on each link is an integer multiple of α
[30], but in the multiple-source case, computing such a flow is
NP-hard [38]. As we need to solve MMUFP to obtain source
selection and routing even if the optimal content placement
is known, a fundamental challenge in solving IC-IR with
approximation guarantee is to develop a good approximation
algorithm for MMUFP, which is still an open problem.

3) Overall Algorithm: Based on the solutions for the sub-
problems in Sections IV-C1–IV-C2, we propose an algorithm
that alternatingly optimizes x and (r, f) as follows. Starting
from an arbitrary feasible solution (r(0), f (0)) to source se-
lection and routing, repeat the following steps for t = 1, 2, . . .
until there is no more improvement in cost or congestion:

1) compute x(t) by maximizing Fr(t−1),f(t−1)(x) subject to
cache capacity constraints;

2) compute (r(t), f (t)) by solving MMSFP (under fractional
routing) or MMUFP (under integral routing) in Gx(t)

.
After each iteration, we only retain the new solution if it has
a lower cost than the solution from the previous iteration.

Remark: While this algorithm remains a heuristic for now,
it has exhibited good performance (see Fig. 7–12) and quick
convergence (within 10 iterations) in all our evaluations.

V. PERFORMANCE EVALUATION

We evaluate our solutions against benchmarks in the sce-
nario of edge caching, where content items are cached at
locations within/near users’ access networks. Edge caching has
been widely used by large content providers like Google [39]
and distributors like Akamai [40], and has been shown to
achieve most of the benefits of ICN [41].

8

Fig. 3. Abovenet topology; •: origin server, •: edge nodes, •: internal nodes.

Fig. 4. Numbers of views per hour for top-10 YouTube videos; solid: ground
truth, dashed: prediction.

Simulation setting: To simulate edge caching, we use an
Internet Service Provider (ISP) topology called Abovenet from
[42] to model the network, where a degree-1 node is desig-
nated as (the gateway to) the origin server permanently storing
all the items, and a set Ve of low-degree nodes (with degree
≤ 3) are designated as edge nodes, which receive requests
from users and host caches. The others are internal nodes that
only forward requests/responses. See Fig. 3 for the topology.

We assume that each edge node can cache ζ items. We
measure routing costs by (propagation) delays. As the origin
server is usually much farther away from users than caches, we
select the delay for the outgoing link of the server randomly
from [100, 200]ms, and the delays for the other links randomly
from [1, 20]ms. We generate requests in two ways:

• Synthetic: Requests are generated for |C| items according
to [2], which used the Zipf distribution with skewness 1.2
and a total rate of 1 request/ms per edge node.

• Trace-driven: Requests are generated according to #views
per hour of the top |C| YouTube videos we collected
over 100 consecutive hours between 11/14/2021 and
11/18/2021 (additional 550 hours of #views have been
collected for training purposes). We randomly distribute
the requests for each video among the edge nodes.

Following the setting in [2] for a topology with similar size
as Abovenet, we set |C| = 10 and ζ = 2 by default, which
will be varied later.

We give each link a default capacity of κ, which is set
to 4% of the total request rate. In synthetic simulation, this
amounts to a bandwidth of 0.2 items/ms, which equals 15
Gbps for an item size of 9.375 MB; in trace-driven simulation,
this amounts to a bandwidth of 13, 715.796 videos/hour,
which equals 14.7 Gbps for the average size of 480.67 MB

1 2 3 4

cache capacity

0

20

40

60

80

100

ro
ut

in
g

co
st

/re
qu

es
t (

m
s)

Alg. 1

k shortest paths

shortest path

1 10 20 30

#candidate paths

0

10

20

30

40

50

60

70

ro
ut

in
g

co
st

/re
qu

es
t (

m
s)

Alg. 1

k shortest paths

1 2 3 4

cache capacity

0

20

40

60

80

100

ro
ut

in
g

co
st

/re
qu

es
t (

m
s)

Alg. 1

k shortest paths

shortest path

1 10 20 30

#candidate paths

0

20

40

60

80

ro
ut

in
g

co
st

/re
qu

es
t (

m
s)

Alg. 1

k shortest paths

Fig. 5. Unlimited link capacities: first row – synthetic simulation, second row
– trace-driven simulation (light: true demand; dark: predicted demand).

for the top-10 videos4. To ensure feasibility, we augment link
capacities along a cycle-free path from the origin server to
each edge node so that all the requests can be served by the
server as a last resort. Our evaluation focuses on the case of
IC-IR. All results are averaged over 100 Monte Carlo runs.

Our trace-driven setting simulates a real-world scenario,
where the network provider adjusts caching and routing deci-
sions on an hourly basis based on the predicted demand. To
enable this, we apply Guassian process regression (GPR) from
the scikit-learn library [43], with white noise, periodic, and
radial-basis function kernels and maximum marginal likeli-
hood fitting, to predict the request rates for the next hour based
on a history of at least 550 hours5. See the results in Fig. 4. We
note that this prediction method is only used to evaluate the
proposed caching/routing algorithms under realistic demand
prediction; demand prediction is not the focus of this work,
and other prediction methods can be applied.

Results: First, in the special case of unlimited link
capacities, we compare our Algorithm 1 against the solution
in [2] (‘k shortest paths’) and content placement as in [35]
based on shortest path routing (‘shortest path’). We configure
the solution in [2] according to its recommendation, by
constructing k shortest paths from the server to each edge
node as the candidate paths with k = 10 by default. The results
in Fig. 5 show that: (i) our algorithm substantially outperforms
these state-of-the-art solutions, (ii) the advantage remains as
we increase the number of candidate paths for [2], and (iii)
the same holds even if our algorithm runs on the predicted
demand and the benchmarks run on the true demand (all the
performances are evaluated based on the true demand). This is
because [2], [35] both predetermine the candidate paths based
on the server’s location, hence not fully utilizing the caches.

Next, we consider the special case of binary cache capaci-
ties, where one of the edge nodes (in addition to the server)
stores all the items and the rest store none. As our problem
reduces to MSUFP in this case, we compare our Algorithm 2

4While the videos have variable sizes, here we only use the #views of these
popular videos to represent realistic content request patterns. Our assumption
of equal item size can be satisfied by partitioning each video into equal-sized
chunks. We leave the chunk-level simulation to future work.

5To accommodate the training time, we perform prediction for five hours
at a time, and then retrain the model using the cumulative history.

9

15 30 45 60

physical link capacity (Gbps)

0

50

100

150

ro
ut

in
g

co
st

/re
qu

es
t (

m
s)

splittable flow

Alg. 2: K = 1000

Alg. 2: K = 2

RNR

15 30 45 60

physical link capacity (Gbps)

0.6

0.8

1

1.2

1.4

1.6

1.8

co
ng

es
tio

n

splittable flow

Alg. 2: K = 1000

Alg. 2: K = 2

RNR

10 20 30 40 50 60

physical link capacity (Gbps)

0

50

100

150

ro
ut

in
g

co
st

/re
qu

es
t (

m
s)

splittable flow

Alg. 2: K = 1000

Alg. 2: K = 2

RNR

10 20 30 40 50 60

physical link capacity (Gbps)

1

2

3

4

5

6

co
ng

es
tio

n

splittable flow

Alg. 2: K = 1000

Alg. 2: K = 2

RNR

Fig. 6. Binary cache capacities: first row – synthetic simulation, second row
– trace-driven simulation (light: true demand; dark: predicted demand).

(with parameter K tuned to minimize congestion under the de-
fault link capacity) with the state-of-the-art MSUFP algorithm
proposed in [30], which is a special case of our algorithm with
K = 2. As benchmarks, we also compare with the splittable
flow and the solution by [2], which routes each request to
the nearest replica (‘RNR’). In addition to routing cost, we
also evaluate congestion, measured by the maximum load-to-
capacity ratio over all the links. The results in Fig. 6 show that:
(i) RNR can cause severe congestion (it exceeds link capacities
by up to 25 times; the congestion plots have been truncated
for better visibility of other results), and (ii) compared to the
state of the art [30] (‘K = 2’), Algorithm 2 with a larger K can
substantially reduce the congestion while achieving/beating the
minimum routing cost achievable without congestion (given by
‘splittable flow’). This is because a larger K leads to smaller
errors when rounding the demands and thus less congestion
when serving the actual demands over paths selected based on
the rounded demands.

Finally, we consider the general case. We compare our
algorithm proposed in Section IV-C (‘alternating’), which
solves MMUFP by LP relaxation with randomized rounding,
with the solution in [35] based on shortest path routing (‘SP’),
a variation of [2] with the shortest path as the only candidate
path (‘SP + RNR’), and [2] with its recommended way of
constructing candidate paths as the k (k = 10) shortest paths
(‘k-SP + RNR’). The results in Fig. 7–8 show that: (i) our
algorithm significantly outperforms [35], [2] in both cost and
congestion, and (ii) while ‘SP + RNR’ also achieves a low
cost, it causes much more congestion. Our algorithm also
converges quickly (within 10 iterations) in all the cases.

While the above observations are obtained under a relatively
small catalog size (set according to the evaluations in [2]), we
have verified that they remain valid (and even become more
prominent) as the catalog size increases, as shown in Fig. 12.
Evaluations under larger catalog sizes are left to future work.

VI. CONCLUSION

We studied the fundamental problem of joint caching and
routing in a cache network with arbitrary topology, with the
objective of minimizing routing cost under link/cache capacity
constraints. After characterizing the complexity of this prob-
lem in all the cases, we developed polynomial-time algorithms

1 2 3 4

cache capacity

0

20

40

60

80

100

ro
ut

in
g

co
st

/re
qu

es
t (

m
s)

IC-FR (alternating)

IC-IR: alternating

 SP

 SP + RNR

 k-SP + RNR

1 2 3 4

cache capacity

0

0.5

1

1.5

2

2.5

3

co
ng

es
tio

n

IC-FR (alternating)

IC-IR: alternating

 SP

 SP + RNR

 k-SP + RNR

1 2 3 4

cache capacity

0

20

40

60

80

100

ro
ut

in
g

co
st

/re
qu

es
t (

m
s)

IC-FR (alternating)

IC-IR: alternating

 SP

 SP + RNR

 k-SP + RNR

1 2 3 4

cache capacity

0

1

2

3

4

co
ng

es
tio

n

IC-FR (alternating)

IC-IR: alternating

 SP

 SP + RNR

 k-SP + RNR

Fig. 7. General case under varying cache capacity: first row – synthetic
simulation, second row – trace-driven simulation (light: true demand; dark:
predicted demand).

15 30 45 60

physical link capacity (Gbps)

0

10

20

30

40

50

60

70

ro
ut

in
g

co
st

/re
qu

es
t (

m
s)

IC-FR (alternating)

IC-IR: alternating

 SP

 SP + RNR

 k-SP + RNR

15 30 45 60

physical link capacity (Gbps)

0

1

2

3

4

5

6

co
ng

es
tio

n

IC-FR (alternating)

IC-IR: alternating

 SP

 SP + RNR

 k-SP + RNR

10 15 20 25

physical link capacity (Gbps)

0

20

40

60

80

ro
ut

in
g

co
st

/re
qu

es
t (

m
s)

IC-FR (alternating)

IC-IR: alternating

 SP

 SP + RNR

 k-SP + RNR

10 15 20 25

physical link capacity (Gbps)

0

1

2

3

4

5

6

co
ng

es
tio

n

IC-FR (alternating)

IC-IR: alternating

 SP

 SP + RNR

 k-SP + RNR

Fig. 8. General case under varying link capacity: first row – synthetic
simulation, second row – trace-driven simulation (light: true demand; dark:
predicted demand).

that achieved guaranteed approximations in important special
cases and superior empirical performance in the general case.
While our focus was on one-shot optimization for given
demands, our solution was shown to work well in an online
setting when combined with reasonable demand prediction.

REFERENCES

[1] S. Sardellitti, F. Costanzo, and M. Merluzzi, “Joint optimization of
caching and transport in proactive edge cloud,” in 2018 26th European
Signal Processing Conference (EUSIPCO), 2018, pp. 797–801.

[2] S. Ioannidis and E. Yeh, “Jointly optimal routing and caching for
arbitrary network topologies,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 6, pp. 1258–1275, 2018.

10 20 30 40

catalog size

0

20

40

60

80

100

ro
ut

in
g

co
st

/re
qu

es
t (

m
s)

IC-FR (alternating)

IC-IR: alternating

 SP

 SP + RNR

 k-SP + RNR

10 20 30 40

catalog size

0

0.5

1

1.5

2

2.5

3

3.5

co
ng

es
tio

n IC-FR (alternating)

IC-IR: alternating

 SP

 SP + RNR

 k-SP + RNR

10 20 30 40

catalog size

0

20

40

60

80

100

120

ro
ut

in
g

co
st

/re
qu

es
t (

m
s)

IC-FR (alternating)

IC-IR: alternating

 SP

 SP + RNR

 k-SP + RNR

10 20 30 40

catalog size

0

1

2

3

4

5

6

co
ng

es
tio

n

IC-FR (alternating)

IC-IR: alternating

 SP

 SP + RNR

 k-SP + RNR

Fig. 9. General case under varying catalog size: first row – synthetic
simulation, second row – trace-driven simulation (light: true demand; dark:
predicted demand).

10

[3] M. Mahdian and E. Yeh, “Mindelay: Low-latency joint caching and
forwarding for Multi-Hop Networks,” in 2018 IEEE International Con-
ference on Communications (ICC), 2018, pp. 1–7.

[4] A. Khreishah, J. Chakareski, and A. Gharaibeh, “Joint caching, routing,
and channel assignment for collaborative small-cell cellular networks,”
IEEE Journal on Selected Areas in Communications, vol. 34, no. 8, pp.
2275–2284, 2016.

[5] K. Poularakis, G. Iosifidis, and L. Tassiulas, “Approximation algorithms
for mobile data caching in small cell networks,” IEEE Transactions on
Communications, vol. 62, no. 10, pp. 3665–3677, 2014.

[6] M. Dehghan, B. Jiang, A. Seetharam, T. He, T. Salonidis, J. Kurose,
D. Towsley, and R. Sitaraman, “On the complexity of optimal re-
quest routing and content caching in heterogeneous cache networks,”
IEEE/ACM Transactions on Networking, vol. 25, no. 3, pp. 1635–1648,
June 2017.

[7] W. Jiang, G. Feng, and S. Qin, “Optimal cooperative content caching and
delivery policy for heterogeneous cellular networks,” IEEE Transactions
on Mobile Computing, vol. 16, no. 5, pp. 1382–1393, 2016.

[8] X. Li, X. Wang, K. Li, Z. Han, and V. C. Leung, “Collaborative multi-
tier caching in heterogeneous networks: Modeling, analysis, and design,”
IEEE Transactions on Wireless Communications, vol. 16, no. 10, pp.
6926–6939, 2017.

[9] A. Gharaibeh, A. Khreishah, B. Ji, and M. Ayyash, “A provably
efficient online collaborative caching algorithm for multicell-coordinated
systems,” IEEE Transactions on Mobile Computing, vol. 15, no. 8, pp.
1863–1876, 2015.

[10] J. Dai, Z. Hu, B. Li, J. Liu, and B. Li, “Collaborative hierarchical caching
with dynamic request routing for massive content distribution,” in 2012
Proceedings IEEE INFOCOM, 2012, pp. 2444–2452.

[11] B. Liu, K. Poularakis, L. Tassiulas, and T. Jiang, “Joint caching and
routing in congestible networks of arbitrary topology,” IEEE Internet of
Things Journal, vol. 6, no. 6, pp. 10 105–10 118, 2019.

[12] J. Liu, Q. Yang, and G. Simon, “Congestion avoidance and load
balancing in content placement and request redirection for mobile CDN,”
IEEE/ACM Transactions on Networking, vol. 26, no. 2, pp. 851–863,
2018.

[13] K. Lim, Y. Bang, J. Sung, and J.-K. K. Rhee, “Joint optimization of
cache server deployment and request routing with cooperative content
replication,” in 2014 IEEE International Conference on Communications
(ICC), 2014, pp. 1790–1795.

[14] J. Perelló, K. Walkowiak, M. Klinkowski, S. Spadaro, and D. Careglio,
“Joint content placement and lightpath routing and spectrum assignment
in CDNs over elastic optical network scenarios,” Computer Communi-
cations, vol. 77, pp. 72–84, 2016.

[15] V. Valancius, B. Ravi, N. Feamster, and A. C. Snoeren, “Quantifying
the benefits of joint content and network routing,” in Proceedings of
the ACM SIGMETRICS/international conference on Measurement and
modeling of computer systems, 2013, pp. 243–254.

[16] R. Moosavi, S. Parsaeefard, M. A. Maddah-Ali, V. Shah-Mansouri, B. H.
Khalaj, and M. Bennis, “Energy efficiency through joint routing and
function placement in different modes of SDN/NFV networks,” arXiv
preprint arXiv:2007.13230, 2020.

[17] M. M. Tajiki, S. Salsano, L. Chiaraviglio, M. Shojafar, and B. Akbari,
“Joint energy efficient and QoS-aware path allocation and VNF place-
ment for service function chaining,” IEEE Transactions on Network and
Service Management, vol. 16, no. 1, pp. 374–388, 2018.

[18] K. Kamran, A. Moharrer, S. Ioannidis, and E. Yeh, “Rate allocation and
content placement in cache networks,” in IEEE INFOCOM, May 2021.

[19] L. Pu, L. Jiao, X. Chen, L. Wang, Q. Xie, and J. Xu, “Online resource
allocation, content placement and request routing for cost-efficient edge
caching in cloud radio access networks,” IEEE Journal on Selected Areas
in Communications, vol. 36, no. 8, pp. 1751–1767, 2018.

[20] S. Shukla, O. Bhardwaj, A. A. Abouzeid, T. Salonidis, and T. He,
“Proactive retention-aware caching with multi-path routing for wireless
edge networks,” IEEE Journal on Selected Areas in Communications,
vol. 36, no. 6, pp. 1286–1299, 2018.

[21] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413–
4430, 2006.

[22] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “FemtoCaching: Wireless content delivery through distributed
caching helpers,” IEEE Transactions on Information Theory, vol. 59,
no. 12, pp. 8402–8413, 2013.

[23] J. M. Kleinberg, “Single-source unsplittable flow,” in Proceedings of the
37th Annual Symposium on Foundations of Computer Science, 1996,
p. 68.

[24] Y. Asano, “Experimental evaluation of approximation algorithms for the
minimum cost multiple-source unsplittable flow problem,” in ICALP
Satellite Workshops, 2000.

[25] G. Strang, “Karmarkar’s algorithm and its place in applied mathematics,”
The Mathematical Intelligencer, 1987.

[26] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, “Maximizing a
monotone submodular function subject to a matroid constraint,” SIAM
Journal on Computing, vol. 40, no. 6, pp. 1740–1766, 2011.

[27] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of ap-
proximations for maximizing submodular set functions–i,” Mathematical
Programming, vol. 14, no. 1, pp. 265–294, December 1978.

[28] G. L. Nemhauser and L. A. Wolsey, “Best algorithms for approximating
the maximum of a submodular set function,” Mathematics of Operations
Research, vol. 3, no. 3, pp. 177–188, August 1978.

[29] A. Ageev and M. Sviridenko, “Pipage rounding: A new method of
constructing algorithms with proven performance guarantee,” Journal
of Combinatorial Optimization, vol. 8, pp. 307–328, 2004.

[30] M. Skutella, “Approximating the singel source unsplittable min-cost flow
problem,” Mathematical Programming, vol. 91, pp. 493–514, 2002.

[31] Y. Dinitz, N. Garg, and M. X. Goemans, “On the single-source unsplit-
table flow problem,” Combinatorica, vol. 19, no. 1, pp. 17–41, 1999.

[32] T. Erlebach and A. Hall, “Np-hardness of broadcast scheduling and
inapproximability of single-source unsplittable min-cost flow,” in Pro-
ceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, 2002, pp. 194–202.

[33] S. Achleitner, N. Bartolini, T. He, T. La Porta, and D. Zad Tootaghaj,
“Fast network configuration in software defined networking,” IEEE
Transactions on Network and Service Management, vol. 15, no. 4, pp.
1249–1263, 2018.

[34] C. Peng, Y. Tan, and L. T. Yang, “New algorithms for the minimum-
cost single-source unsplittable flow problem,” in Proceedings of the
Advanced Information Networking and Applications Workshops, 2007,
pp. 136–141.

[35] S. Ioannidis and E. Yeh, “Adaptive caching networks with optimality
guarantees,” IEEE/ACM Transactions on Networking, vol. 26, no. 2, pp.
737–750, 2018.

[36] M. X. Goemans and D. P. Williamson, “New 3/4-approximation al-
gorithms for the maximum satisfiability problem,” SIAM Journal on
Discrete Mathematics, vol. 7, no. 4, pp. 656–666, 1994.

[37] C. Barnhart, C. A. Hane, and P. H. Vance, “Using branch-and-price-and-
cut to solve origin-destination integer multicommodity flow problems,”
Operations Research, vol. 48, no. 2, pp. 318–326, 2000.

[38] S. Even, A. Itai, and A. Shamir, “On the complexity of timetable and
multicommodity flow problems,” SIAM Journal on Computing, vol. 5,
no. 4, pp. 691–703, December 1976.

[39] “What’s in a name? Understanding the Google Cloud network
‘edge’,” https://cloud.google.com/blog/products/networking/
understanding-google-cloud-network-edge-points.

[40] “Akamai API Gateway User Guide: Caching,” https://learn.
akamai.com/en-us/webhelp/api-gateway/api-gateway-user-guide/
GUID-B717E657-4C07-4B76-934A-36F1C40F91AE.html.

[41] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. Maggs, K. Ng, V. Sekar, and S. Shenker, “Less pain, most of the
gain: Incrementally deployable ICN,” in SIGCOMM, 2013, p. 147–158.

[42] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with Rocketfuel,” in ACM SIGCOMM, August 2002.

[43] “scikit-learn: gaussian processes,” https://scikit-learn.org/stable/
modules/gaussian process.html.

[44] P. M. Vaidya, “Speeding-up linear programming using fast matrix
multiplication,” in 30th Annual Symposium on Foundations of Computer
Science, 1989, pp. 332–337.

[45] M. Fisher, G. Nemhauser, and L. Wolsey, “An analysis of approximations
for maximizing submodular set functions – II,” Math. Prog. Study, vol. 8,
pp. 73–87, 1978.

[46] “REPETITA: repeatable experiments for performance evaluation of
traffic-engineering algorithms.” [Online]. Available: https://github.com/
svissicchio/Repetita

11

https://cloud.google.com/blog/products/networking/understanding-google-cloud-network-edge-points
https://cloud.google.com/blog/products/networking/understanding-google-cloud-network-edge-points
https://learn.akamai.com/en-us/webhelp/api-gateway/api-gateway-user-guide/GUID-B717E657-4C07-4B76-934A-36F1C40F91AE.html
https://learn.akamai.com/en-us/webhelp/api-gateway/api-gateway-user-guide/GUID-B717E657-4C07-4B76-934A-36F1C40F91AE.html
https://learn.akamai.com/en-us/webhelp/api-gateway/api-gateway-user-guide/GUID-B717E657-4C07-4B76-934A-36F1C40F91AE.html
https://scikit-learn.org/stable/modules/gaussian_process.html
https://scikit-learn.org/stable/modules/gaussian_process.html
https://github.com/svissicchio/Repetita
https://github.com/svissicchio/Repetita

APPENDIX A
SUPPORTING PROOFS

A. Proof of Lemma IV.1

Proof. It is easy to see that F̃RNR(X) is monotone increasing
in X , as caching one more item can only help to increase (or
preserve) the cost saving under proper source selection.

For submodularity, we need to show that for any X(1) ⊆
X(2) ⊆ V × C and any (v, i) 6∈ X(2),

F̃RNR({(v, i)} ∪X(1))− F̃RNR(X(1)) ≥F̃RNR({(v, i)} ∪X(2))

− F̃RNR(X(2)). (16)

To this end, consider the set of requesters for content i that
will benefit from storing a replica of content i at node v:

Svi(X
(j)):={s∈V : (i, s)∈R, wv→s< min

u:(u,i)∈X(j)
wu→s}, (17)

where j = 1, 2. Since X(1) ⊆ X(2), Svi(X(1)) ⊇ Svi(X(2)),
and minu:(u,i)∈X(1) wu→s ≥ minu:(u,i)∈X(2) wu→s for each
s ∈ V . Therefore,

LHS of (16) =
∑

s∈Svi(X(1))

λ(i,s)

(
(min
u:(u,i)∈X(1)

wu→s)− wv→s
)

≥
∑

s∈Svi(X(2))

λ(i,s)

(
(min
u:(u,i)∈X(2)

wu→s)− wv→s
)

= RHS of (16),

which completes the proof.

B. Proof of Lemma IV.2

Proof. We will use the Goemans-Williamson inequality [36],
[35]: for any yi ∈ [0, 1] for i = 1, . . . , n,

(1− 1

e
) min(1,

n∑
i=1

yi) ≤ 1−
n∏
i=1

(1− yi) ≤ min(1,

n∑
i=1

yi).

By definition (3),

FRNR(x, r) =
∑

(i,s)∈R

λ(i,s)
∑
v∈V

wmax

·
(

1− r(i,s)v

(
1− xvi(wmax − wv→s)

wmax

))
. (18)

As y1 := 1−r(i,s)v ∈ [0, 1] and y2 := xvi(wmax−wv→s)
wmax

∈ [0, 1],
applying the Goemans-Williamson inequality yields that

(1− 1

e
) min

(
1, 1− r(i,s)v +

xvi(wmax − wv→s)
wmax

)
≤ 1− r(i,s)v

(
1− xvi(wmax − wv→s)

wmax

)
≤ min

(
1, 1− r(i,s)v +

xvi(wmax − wv→s)
wmax

)
, (19)

Plugging (19) into (18) completes the proof.

C. Proof of Lemma IV.3

Proof. Without loss of generality, suppose that x̃ achieves “=”
in (2c), as otherwise its value can be increased to achieve “=”
without decreasing FRNR(x̃, r̃).

If ∃x̃vi ∈ (0, 1), then there must exist another fractional
variable x̃vj ∈ (0, 1) for j 6= i (i, j ∈ C), as

∑
i′∈C x̃vi′ =

cv ∈ N. Treating xvi, xvj as the only variables, we can
formulate a simple LP:

max
xvi,xvj

FRNR(xvi, xvj |x̃−{vi,vj}, r̃) (20a)

s.t. xvi + xvj ≤ x̃vi + x̃vj , (20b)
xvi, xvj ∈ [0, 1], (20c)

where FRNR(xvi, xvj |x̃−{vi,vj}, r̃) denotes FRNR(x, r) when
r = r̃ and x = x̃ at all the entries except for xvi, xvj . As
FRNR(xvi, xvj |x̃−{vi,vj}, r̃) can be written as

xvi
∑

s:(i,s)∈R

λ(i,s)r̃
(i,s)
v (wmax − wv→s)

+ xvj
∑

s:(j,s)∈R

λ(j,s)r̃
(j,s)
v (wmax − wv→s) + c, (21)

where c is a constant not depending on xvi or xvj , there
exists an optimal solution that makes xvi or xvj inte-
gral. Specifically, if

∑
s:(i,s)∈R λ(i,s)r̃

(i,s)
v (wmax − wv→s) ≥∑

s:(j,s)∈R λ(j,s)r̃
(j,s)
v (wmax − wv→s), then (xvi, xvj) from

(8) is an optimal solution to (20), which sets xvj = 0 if
x̃vi + x̃vj ≤ 1 or xvi = 1 if x̃vi + x̃vj > 1; similar argument
holds in the other case. Moreover, as (x̃vi, x̃vj) is a feasible
solution to (20), the optimal solution (xvi, xvj) guarantees that
FRNR(xvi, xvj |x̃−{vi,vj}, r̃) ≥ FRNR(x̃, r̃). Thus, one applica-
tion of (8) or (9) reduces the number of fractional variables
by at least one without decreasing FRNR, at a time complexity of
O(|V |). By repeating this step O(|V ||C|) times, we can obtain
an integral solution x such that FRNR(x, r̃) ≥ FRNR(x̃, r̃).

D. Proof of Theorem IV.4

Proof. Let (x̃, r̃) denote the optimal solution to (7). Then

FRNR(x̃, r̃) ≥ (1− 1

e
)LRNR(x̃, r̃) (22)

≥ (1− 1

e
)LRNR(x∗, r∗) (23)

≥ (1− 1

e
)FRNR(x∗, r∗), (24)

where (22) and (24) are due to Lemma IV.2, and (23) is
due to the optimality of (x̃, r̃) for (7). By Lemma IV.3, the
rounded x satisfies FRNR(x, r̃) ≥ FRNR(x̃, r̃). Finally, given an
integral x, it is easy to see that RNR, i.e., r(i,s)v = 1 for
v = arg minu:xui=1 wu→s (∀(i, s) ∈ R), minimizes CRNR and
hence maximizes FRNR. Therefore,

FRNR(x, r) ≥ FRNR(x, r̃) ≥ FRNR(x̃, r̃) ≥ (1− 1

e
)FRNR(x∗, r∗).

In terms of complexity, line 1 can be done in O(|V |(|E|+
|V | log |V |)) time using Dijkstra’s algorithm, line 2 can be
done in O(|R|2.5|V |2.5) time using Vaidya’s LP algorithm [44]

12

(as the number of variables and the number of constraints
are both O(|R||V |)), line 3 takes O(|V |2|C|) time as in
Lemma IV.3, and line 4 takes O(|V ||R|) time. Thus, the
total complexity is O(|V ||E|+ |R|2.5|V |2.5) (assuming |C| =
O(|R|)).

E. Proof of Lemma IV.5

Proof. Given a feasible joint source selection and routing
solution (r,f) in G, we can construct an equivalent solution
f ′ in G′ such that f ′(i,s)uv = f

(i,s)
uv for all (i, s) ∈ R and

(u, v) ∈ E, and f ′(i,s)vsv = r
(i,s)
v for all (i, s) ∈ R and v ∈ Vs.

As the virtual links have no capacity constraints or costs, f ′

is a feasible routing solution in G′ with a single source vs,
and achieves the same cost as f . Similarly, given a feasible
routing solution f ′ in G′ that serves all the requests from vs,
the same construction yields a feasible joint source selection
and routing solution (r,f) with the same cost.

F. Proof of Theorem IV.7

Proof. To show (i), since the optimal splittable flow f
has a cost no larger than the cost of the optimal unsplit-
table flow, it suffices to show that

∑n
i=1 λi

∑
e∈pi we ≤∑n

i=1

∑
p∈Pi

f
(i)
p
∑
e∈p we. To this end, we first note that

reducing the flow in the descending order of path cost (line 4)
ensures that for any commodity i and any path p with f̄ (i)p > 0,

(λi − λ̄i)
∑
e∈p

we ≤
∑
p′∈Pi

(f
(i)
p′ − f̄

(i)
p′)

∑
e∈p′

we. (25)

Meanwhile, the partition in (12) ensures that for each i ∈ Sj ,

log

(
λmax

λ̄i

)
= −
bK log(λi

λmax
)c

K
= qi −

j

K
(26)

for qi := − bK log(λi/λmax)c
K + j

K ∈ N, which implies that
λ̄i = λmax2j/K−q

(j) · 2q(j)−qi for q(j) := maxi∈Sj qi. That
is, the rounded demands (λ̄i)i∈Sj

satisfy the condition in
Lemma IV.6. By Lemma IV.6, the converted unsplittable flow
for Sj (j = 0, . . . ,K − 1) satisfies∑

i∈Sj

λ̄i
∑
e∈pi

we ≤
∑
i∈Sj

∑
p∈Pi

f̄ (i)p
∑
e∈p

we. (27)

As the rounding in [30, Algorithm 2] ensures that each pi
satisfies f̄ (i)pi > 0, (25) implies

n∑
i=1

(λi − λ̄i)
∑
e∈pi

we ≤
n∑
i=1

∑
p∈Pi

(f (i)p − f̄ (i)p)
∑
e∈p

we. (28)

Moreover, as
⋃K−1
j=0 Sj = {1, . . . , n}, (27) implies

n∑
i=1

λ̄i
∑
e∈pi

we ≤
n∑
i=1

∑
p∈Pi

f̄ (i)p
∑
e∈p

we. (29)

Summing (28) and (29) proves (i).

s

v2v1

vs

item 1

item 2

Fig. 10. Example for unbounded approximation ratio.

To show (ii), consider a given e ∈ E. Let ij :=
arg maxi∈Sj :e∈pi λ̄i, f̄j(e) the load imposed on e by f̄j , and
f(e) the load imposed on e by f . We have

∑
i:e∈pi

λi ≤
K−1∑
j=0

λij + 21/K
∑

i∈Sj :e∈pi,i6=ij

λ̄i

 (30)

<

K−1∑
j=0

(
λij + 21/K f̄j(e)

)
(31)

≤
K−1∑
j=0

λij + 21/Kf(e) (32)

<
21/K

2(21/K − 1)
λmax + 21/Kce, (33)

where (30) is because λi ≤ 21/K λ̄i as implied by (11), (31) is
by Lemma IV.6, (32) is because f̄ is reduced from f , and (33)
is due to f(e) ≤ ce (as f is a feasible flow) and the fact that
∀i ∈ Sj , λi ≤ λmax for j = K−1, and λi < 2(j+1−K)/Kλmax

for j = 0, . . . ,K − 2, implied by − bK log(λi/λmax)c
K + j

K ≥ 1.
For complexity, line 1 solves an LP with O(n|E|) variables

and O(|E| + n|V |) constraints, which takes O(n2.5(|V | +
|E|)2.5) time by Vaidya’s algorithm [44]. Line 2 takes
O(
∑n
i=1 |V ||Pi|) = O(n|V ||E|) time as |Pi| ≤ |E|. This

is because in constructing Pi, we set initial “link capaci-
ties” to (f

(i)
e)e∈E , and iteratively find a s → di path with

positive residual capacity and route the maximum flow on
the path. As each iteration reduces the residual capacity of
at least one link to zero, the number of iterations, i.e., the
number of constructed paths |Pi|, is at most |E|. Lines 3–
4 take O(

∑n
i=1 |Pi| log |Pi|) = O(n|E| log |E|) time, dom-

inated by the sorting of the path costs for each Pi (the
path costs can be computed while constructing Pi). Line 5
takes O(n) time. Line 7 takes O(|Sj ||V | + |E| log(λmax

λmin
) +

|V ||E|) time by Lemma IV.6, and thus lines 6–7 take
O
(
n|V |+K|E|

(
log(λmax

λmin
) + |V |

))
time. Summing up all

these yields the overall complexity of Algorithm 2.

G. Proof of Proposition ??
Proof. We prove the claim by constructing an example with an
arbitrarily large approximation ratio. Consider the scenario in
Fig. 10, where client s requests item 1 with rate λ(1,s) = λ and
item 2 with rate λ(2,s) = ε. Suppose that the cache capacities
of v1, v2, and vs are 1, 1, and 2, respectively. Suppose that
all the links have capacity λ, wv1s = ε, and wvsv1 = wvsv2 =
wv2s = w. If the initial solution is to store item 1 on v2
and item 2 on v1, and serve requests for item 1 from v2 and
requests for item 2 from v1, then it is easy to see that this

13

will be the final solution of alternating optimization (i.e., it is
an NE), with a total cost of λw + ε2. However, the optimal
solution is to store item 1 on v1 and item 2 on v2, and serve
requests for item 1 from v1 and requests for item 2 from v2,
which has a total cost of ε(λ + w). The approximation ratio
is unbounded as limε→0 (λw + ε2)/

(
ε(λ+ w)

)
=∞.

H. Proof of Lemma ??
Proof. It is easy to see that (V × C, I) is an independence
system, as X = ∅ is feasible for (??), and a subset of a feasible
set remains feasible. Consider any X ⊆ V × C and any two
maximal feasible subsets X1, X2 ⊆ X . To add an element
(v, i) ∈ X2 \ X1 to X1, we have to take out a set X ′ of
at most d/e elements from X1 such that (X1 \X ′) ∪ {(v, i)}
remains feasible for (??). Repeating this swap for each element
in X2 \ X1 shows that the cardinalities of the bases of X
differ by at most p := d/e fold. Hence, (V × C, I) is a p-
independence system by Definition ??.

I. Proof of Theorem ??
Proof. It is known [45] that for maximizing a monotone sub-
modular function subject to a p-independence constraint, the
greedy algorithm has an approximation ratio of 1/(1+p).

J. Proof of Lemma ??
Proof. By (14), increasing elements of x can only increase the
function value, which proves the monotonicity of . Moreover,
for any X(1) ⊆ X(2) ⊆ V × C and any (v, i) 6∈ X(2), let
Kp,i(X

(j)) (j = 1, 2) denote the index of the node on path p
with the nearest replica when serving item i to node p|p| along
path p under content placement X(j). It is easy to see that
Kp,i(X

(1)) ≤ Kp,i(X
(2)). Thus, the increase in by selecting

(v, i) on top of X(j) satisfies

({(v, i)} ∪X(1))− (X(1))

=
∑

i:(i,s)∈R

∑
p∈P(i,s):

pkv=v

λ(i,s)p max

0,

|p|−1∑
k=Kp,i(X(1))

wpkpk+1
−
|p|−1∑
k=kv

wpkpk+1



≥
∑

i:(i,s)∈R

∑
p∈P(i,s):

pkv=v

λ(i,s)p max

0,

|p|−1∑
k=Kp,i(X(2))

wpkpk+1
−
|p|−1∑
k=kv

wpkpk+1


= ({(v, i)} ∪X(2))− (X(2)),

which proves the submodularity of .

APPENDIX B
ADDITIONAL EXPLANATIONS

A. Conversion between the Case of Binary Cache Capacities
and MSUFP

Given the auxiliary graph G′ constructed from the original
topology G and the locations of caches Vs as in Fig. 2, the
corresponding MSUFP problem aims at finding an unsplittable
flow in G′ within the link capacities at the minimum cost, to
route each commodity (i, s) ∈ R of demand λ(i,s) from the
virtual source vs to the content requester s. For example, if

𝑣𝑠 (virtual source)

𝑣 ∈ 𝑉𝑠
𝑣 ∈ 𝑉\𝑉𝑠

real link virtual link

𝑣1
𝑣2

𝑢1
𝑢2

𝑢3

𝑢4

𝑢5
item 1
item 2

Fig. 11. Example: MSUFP in auxiliary graph G′.

R = {(1, u1), (1, u2), (1, u4), (2, u3), (2, u5)} in the network
illustrated in Fig. 11, then the constructed MSUFP problem
has n = 5 commodities, all with the same source vs, and
the commodity (1, u1) ∈ R has destination u1 and demand
λ(1,u1). After solving the MSUFP problem, e.g., by Algo-
rithm 2, we will obtain a routing path for each commodity
in G′, ignoring the first hop of which gives the routing path
in the original topology. For example, if the path given by
MSUFP for commodity (1, u1) in Fig. 11 is vs → v1 → u1,
then the source for serving item 1 to requester u1 is v1, and
the path is v1 → u1.

B. Ideas in Solving MSUFP
We first interpret the utility of the existing rounding al-

gorithm in [30] according to Lemma IV.6. Given an optimal
splittable flow f that minimizes the routing cost under the
given link capacities, we know that the cost of f is no more
than the minimum cost of an unsplittable flow under the same
link capacities, and the traffic load f(e) it imposes on each
link e ∈ E is no more than the link capacity ce. Lemma IV.6
states that if the demands only differ by factors that are integer
powers of 2, then we can use an algorithm in [30] to convert
f to an unsplittable flow that routes each commodity on a
single path, such that (i) the routing cost is no larger than the
cost of any feasible unsplittable flow, and (ii) the excess load
on each link (beyond its capacity) is no more than the rate
of the largest flow traversing it. Hence, the key is to convert
arbitrary demands (λi)

n
i=1 to demands that differ by integer

powers of 2.
To this end, we round each demand λi down to λ̄i as in

(11) and partition the rounded demands into K subsets {Sj :
j = 0, . . . ,K − 1} as in (12). This partition guarantees that
the rounded demands in each subset (λ̄i)i∈Sj only differ by
integer powers of 2. This is because by (12), ∀i ∈ Sj , ∃qi ∈ N
such that

−bK log(λi/λmax)c
K

+
j

K
= qi, (34)

which implies that

λ̄i = λmax2bK log(λi/λmax)c/K = λmax2j/K−qi . (35)

Therefore, if i∗ is the commodity in Sj with the minimum
rounded demand, then

λ̄i
λ̄i∗

= 2qi∗−qi , (36)

14

TABLE I
EXECUTION TIME UNDER CHUNK-LEVEL SIMULATION

scenario algorithm avg execution time (s)

cuv =∞
Alg. 1 0.7260

[2] (‘k shortest paths’) 11.1574
[35] (‘shortest path’) 0.0171

cv = 0/|C|
Alg. 2 (K = 1000) 1.4030

[30] 1.4032
[2] (‘RNR’) 0.0154

general

alternating 9.6714
[35] (‘SP’) 0.0313

[2] (‘SP + RNR’) 0.0493
[2] (‘k-SP + RNR’) 11.3286

TABLE II
EXECUTION TIME UNDER FILE-LEVEL SIMULATION

scenario algorithm avg execution time (s)

cuv =∞
greedy 0.0226

[2] (‘k shortest paths’) 0.4364
[35] (‘shortest path’) 0.0155

cv = 0/|C|
Alg. 2 (K = 1000) 1.5836

[30] 1.5837
[2] (‘RNR’) 0.0167

general

alternating 1.0910
[35] (‘SP’) 0.0161

[2] (‘SP + RNR’) 0.0459
[2] (‘k-SP + RNR’) 10.4771

where qi∗−qi ∈ N because λ̄i∗ ≤ λ̄i. Note that this argument
also holds for λi = λmax, which belongs to SK−1. The round-
ing and partitioning decompose the original MSUFP problem
with arbitrary demands into K smaller MSUFP problems with
demands satisfying the condition in Lemma IV.6, which allows
us to use the algorithm in [30] to convert the rounded splittable
flows into unsplittable flows with optimal cost and bounded
congestion; see details in the proof of Theorem IV.7.

Finally, we comment on the role of the design parameter
K. Although K can be any positive integer, we expect a
larger value of K to yield less congestion. This is because in
rounding the demands, we reduce each demand by a factor
of at least 2−1/K . Intuitively, a larger K will lead to a
smaller demand reduction, and thus less congestion when
computing the routes based on the reduced demands but using
the routes to support the original demands. This intuition has
been confirmed by our evaluation results in Fig. 6.

APPENDIX C
EXECUTION TIME EVALUATION

In addition to the quality of the solutions, We have also
evaluated the computation efficiency of the algorithms as
measured by their average execution times under the default
parameter setting, shown in Tables I–II. All the times are
measured under IC-IR, which is the most computationally
challenging case. We see that the proposed algorithms are
sufficiently fast to be applied to adjust caching and routing
decisions on a regular basis.

20 38 50 65

catalog size (#chunks for 3,6,9,12 videos)

0

0.5

1

1.5

2

to
ta

l r
ou

tin
g

co
st

10
8

IC-FR (alternating)

IC-IR: alternating

 SP

 SP + RNR

 k-SP + RNR

20 38 50 65

catalog size (#chunks for 3,6,9,12 videos)

0

5

10

15

20

25

30

co
ng

es
tio

n

IC-FR (alternating)

IC-IR: alternating

 SP

 SP + RNR

 k-SP + RNR

Fig. 12. Varying catalog size by varying #videos (light: true demand; dark:
predicted demand).

25 50 100

chunk size (MB)

0

0.5

1

1.5

2

2.5

to
ta

l r
ou

tin
g

co
st

10
8

IC-FR (alternating)

IC-IR: alternating

 SP

 SP + RNR

 k-SP + RNR

25 50 100

chunk size (MB)

0

20

40

60

80

100

120

co
ng

es
tio

n

IC-FR (alternating)

IC-IR: alternating

 SP

 SP + RNR

 k-SP + RNR

Fig. 13. Varying chunk size under the same #videos (light: true demand;
dark: predicted demand).

APPENDIX D
ADDITIONAL EXPERIMENTS

While the observations in Section V are based on a fixed set
of environment parameters, such as network topology, catalog
size, chunk size, and demand prediction method, we will show
via additional simulations that these observations remain valid
as these parameters vary. In the sequel, we will only focus
on the case of caching/routing chunked videos under limited
cache and link capacities, as this is the case of primary interest
in this work.

A. Varying Number of Videos

As the catalog includes chunks (of 100MB each) from more
videos, shown in Fig. 12, the relative performance of the
evaluated algorithms exhibits the same trend as in Table ??.
Meanwhile, both the routing cost and the congestion tend to
increase, as more demands are contending for the same amount
of cache and link capacities.

B. Varying Chunk Size

Another way to grow the catalog size is to decrease the
size of each chunk while keeping the set of videos the same.
The top-10 videos in our trace correspond to |C| = 199
chunks of size 25MB, |C| = 103 chunks of size 50MB, and
|C| = 54 chunks of size 100MB. Fig. 13 shows the result
based on demands from the first 10 hours; the same trend
has been observed for other hours. We see that the proposed
algorithms (‘alternating’) achieve slightly smaller costs as the
chunk size decreases, because smaller chunks allow for more
fine-grained optimization of caching and routing. Meanwhile,
the congestion of the benchmark algorithms (‘SP’, ‘SP +
RNR’, ‘k-SP + RNR’) gets worse, as they become greedier
in cost reduction.

C. Varying Prediction Accuracy

As mentioned before, the prediction of the demands is
not our focus. Nevertheless, it is desirable to understand the
sensitivity of our solutions to prediction errors. To this end,
we perform a sensitivity analysis by synthetically generating
prediction errors according to a normal distribution N (0, σ2),

15

0 10 20 30

prediction error

0

0.5

1

1.5

2

2.5
to

ta
l r

ou
tin

g
co

st
10

8

IC-FR (alternating)

IC-IR: alternating

 SP

 SP + RNR

 k-SP + RNR

0 10 20 30

prediction error

0

5

10

15

20

25

30

35

co
ng

es
tio

n

IC-FR (alternating)

IC-IR: alternating

 SP

 SP + RNR

 k-SP + RNR

Fig. 14. Varying prediction error σ (σ = 0 represents true demand).

TABLE III
TOPOLOGIES AND PARAMETERS IN EVALUATION

Topology |V | |E| link capacity
Abvt 23 31 1 Gbps
Tinet 53 89 1 Gbps
Deltacom 113 161 1 Gbps

and testing the performance of joint caching and routing under
different levels of error as measured by the root mean squared
error σ. The results in Fig. 14 indicate that our proposed
algorithms (‘alternating’) are reasonably robust to prediction
errors, maintaining notable advantages over the benchmarks
from [35], [2] in both cost and congestion over a wide range
of σ values.

D. Varying Network Topology

Finally, we evaluate the impact of network size and topology
by repeating our experiments on three networks of different
sizes, with parameters in Table III. To make the setting
more realistic, we use real bandwidths as link capacities.
All the data are from6 [46]. We simulate edge caching in
each network under the same setting as in Section V, except
that the topology and the default link capacity are changed
according to the dataset. In each network, we set the lowest-
degree node as the origin server and the next 5 lowest-degree
nodes as the edge nodes, as shown in Fig. 15. Fig. 16 shows
the performance for each network. We see that the topology
does have a notable impact on the absolute performance in
cost and congestion, where a network tends to have a higher
cost or congestion if the size is larger or the edge nodes are
more scattered. However, our proposed algorithms consistently
outperform the benchmarks in all the simulated networks.

6Although ‘Abvt’ also stands for Abovenet, the topology in [46] is from a
different source (Internet Topology Zoo) and different from the topology in
Fig. 3 (which is from Rocketfuel). We switch to this dataset to experiment
with real link capacities.

(a) Abvt (b) Tinet

(c) Deltacom
Fig. 15. Network topology with varing size; •: origin server, •: edge nodes,
•: internal nodes.

Abvt Tinet Deltacom

network

0

0.5

1

1.5

2

2.5

3

3.5

to
ta

l r
ou

tin
g

co
st

10
8

IC-FR (alternating)

IC-IR: alternating

 SP

 SP + RNR

 k-SP + RNR

Abvt Tinet Deltacom

network

0

20

40

60

80

100

co
ng

es
tio

n

IC-FR (alternating)

IC-IR: alternating

 SP

 SP + RNR

 k-SP + RNR

Fig. 16. Varying network topology with real link capacities (light: true
demand; dark: predicted demand).

16

	Introduction
	Related Work
	Summary of Contributions

	Problem Formulation
	Network Model
	Model of Caching
	Model of Routing
	Problem: Optimal Joint Caching and Routing

	Complexity Analysis
	Algorithm Design
	Approximation under Unlimited Link Capacities=-1
	Equivalent Formulation
	Submodularity of Objective
	Approximation Algorithm
	A Special Case

	Bicriteria Approximation under Binary Cache Capacities
	Equivalent Formulation
	Bicriteria Approximation Algorithms

	Heuristics under General Link/Cache Capacities
	Approximation Algorithm for Content Placement
	Algorithms for Source Selection and Routing
	Overall Algorithm

	Performance Evaluation
	Conclusion
	References
	Appendix A: Supporting Proofs
	Proof of Lemma IV.1
	Proof of Lemma IV.2
	Proof of Lemma IV.3
	Proof of Theorem IV.4
	Proof of Lemma IV.5
	Proof of Theorem IV.7
	Proof of Proposition ??
	Proof of Lemma ??
	Proof of Theorem ??
	Proof of Lemma ??

	Appendix B: Additional Explanations
	Conversion between the Case of Binary Cache Capacities and MSUFP
	Ideas in Solving MSUFP

	Appendix C: Execution Time Evaluation
	Appendix D: Additional Experiments
	Varying Number of Videos
	Varying Chunk Size
	Varying Prediction Accuracy
	Varying Network Topology

