
1

Enforcing Multilevel Security Policies
in Unstable Networks

Quinn Burke, Student Member, IEEE, Fidan Mehmeti, Member, IEEE, Rahul George,
Kyle Ostrowski, Trent Jaeger, Senior Member, IEEE, Thomas La Porta, Fellow, IEEE,

and Patrick McDaniel, Fellow, IEEE

Abstract—Multilevel security (MLS) systems control access to
data by formalizing permissible and impermissible information
flows between data sources and destinations (e.g., database servers
and clients) fixed with distinct security labels. In computer
networks, MLS systems have been used to prevent unauthorized
data disclosure in shared-infrastructure settings where network
hosts and devices may fall within different trust domains (e.g., in
multi-tenant cloud networks or wireless mesh networks). However,
current MLS systems assume static network behavior—thus
preventing the network from being practically usable in the
presence of dynamic network events that frequent unstable
network environments, including sudden changes in traffic
patterns, link failures, and topology changes as a result of device
movement or intermittent device connectivity. In this paper,
we introduce MLS-Enforcer, a software-defined networking
(SDN) controller application that can efficiently deploy network-
level MLS policies while retaining the ability to securely relabel
network nodes under changing topology state and network traffic
demands. We model network adaptivity as an integer linear
programming problem that reflects a given security policy. We
then introduce heuristic relabeling algorithms that achieve near-
optimal performance and are more tractable and efficient for
larger networks. We validate MLS-Enforcer on several network
topologies and traffic loads, demonstrating that it can relabel
the network to route 90%+ of flows under normal conditions
and quickly converge (on the order of seconds for the heuristic
algorithms) under changing needs—from small network structure
changes to catastrophic failures. This shows that formally secured
networks can feasibly be deployed in diverse, changing, and
unpredictable environments.

Index Terms—Software-defined networking, SDN, security ser-
vices, security management, wireless network security, multilevel
security, optimization

I. INTRODUCTION

Multilevel security (MLS) systems control access to data
through a reference monitor that governs access requests made
on data sources. The reference monitor uses security labels and
a security policy to formalize permissible and impermissible

Quinn Burke, Rahul George, Kyle Ostrowski, Trent Jaeger, Thomas La Porta, and
Patrick McDaniel are with the Department of Computer Science and Engineering, The
Pennsylvania State University, University Park, PA 16802 USA (e-mail: qkb5007@psu.edu;
rtg64@psu.edu; kto5055@psu.edu; trj1@psu.edu; tfl12@psu.edu; mcdaniel@cse.psu.edu).

Fidan Mehmeti is with the Chair of Communication Networks, Technical University
of Munich, Germany (e-mail: fidan.mehmeti@tum.de).

This research was sponsored by the Combat Capabilities Development Command
Army Research Laboratory and was accomplished under Cooperative Agreement Number
W911NF-13-2-0045 (ARL Cyber Security CRA). The views and conclusions contained
in this document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Combat Capabilities Development
Command Army Research Laboratory or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government purposes not withstanding
any copyright notation here on. This work was also supported in part by the National
Science Foundation under award CNS-1946022.

information flows between data sources and destinations
(e.g., database servers and clients). The formalization is
particularly useful in computer networks operating under a
shared-infrastructure model where tenants share the underlying
physical hosts and network devices, but fall within different
trust domains—for example, in multi-tenant cloud/enterprise
networks [1] or multi-organization wireless mesh networks [2].
As such, MLS systems have become essential components in
network routing [3] to protect data between network-service
endpoints [4], [5] and to isolate the traffic between different
cloud tenants [6].

Software-defined networks (SDNs) have eased the imple-
mentation of MLS-based network routing systems by allowing
them to run as SDN controller applications. Here, the controller
application computes secure network-flow routes and manages
network-switch flow tables via a northbound interface to the
SDN controller (typically, a REST API). Yet, the current design
of MLS systems is limited in that it assumes a fixed set of
security labels on network hosts and devices, which leads
to under-utilization and sometimes (under inflexible security
policies) a failure to route flows—i.e., it achieves low flow
coverage. This prevents the network from being practically
usable in the presence of dynamic network events that frequent
unstable network environments (e.g., wireless mesh networks),
including sudden changes in traffic patterns, link failures, and
topology changes as a result of device movement or intermittent
device connectivity [2].

In this paper, we introduce MLS-Enforcer, an SDN
controller application that routes flows securely under MLS
policies and dynamically adjusts network-switch security labels
when necessary to improve flow coverage. It therefore allows
security policies to be fluidly configured and network-flow
routes to be changed in response to evolving traffic and topology
profiles—all while providing the service transparently to the
entire network. We approach the problem by formulating integer
linear-programs (ILP) that reflect MLS security policies that
preserve the confidentiality of information flows. We then
introduce heuristic relabeling algorithms that achieve near-
optimal performance and are tractable and efficient.

As relabeling network switches is an online problem, several
unique challenges arise. First, relabeling may affect flows with
already-established routes, and thus relabeling should impose
minimal disruption on them. Additionally, changing switch
labels requires a secure procedure for wiping and rebooting
a switch (to reset the device into a known/trusted/attestable
state), which takes the time that is otherwise used for packet

forwarding; therefore, the relabeling algorithms must manage
invoking switch reboots and distributing flow rules efficiently 1.
Further, policies that allow flows of different labels to traverse
common switches (i.e., flow mingling) introduce the potential
for side-channel attacks (e.g., traffic analysis) by hosts using the
switch; therefore, it is essential to assess the tradeoff between
increased flow coverage and allowing flow mingling (along
with any risk that it introduces). Lastly, it is important that the
network maintains near-optimal or optimal coverage of flows
(i.e., the number of flows that can be routed) in the presence
of dynamic network events such as sudden changes in traffic
patterns, link failures, and topology changes as a result of
device movement or intermittent device connectivity.

As link failures and device movement are convention-
ally wireless network problems, we focus our evaluation of
MLS-Enforcer on common wireless network topologies [7]:
mesh and star networks. We also measure the performance
of the labeling process in more traditional wired (fat-tree)
networks for juxtaposition. We focus on three metrics: coverage,
agility, and disruption. A coverage analysis shows that we
can achieve high flow coverage for all tested networks and
policies: experiments in a mesh network show that the system
can achieve 99% coverage using an optimization solver, and
95% using a heuristic algorithm. With respect to agility and
disruption, experiments show that the heuristic algorithms are
responsive to significant network events, achieving near-optimal
coverage within ≈5 mins. The relabeling process completes
with minimal and controllable disruption to ongoing flows
(where up to 30% of flows may be queued temporarily due to
switch reboots). Lastly, computing routes with the optimization
solver requires up to 5 minutes to relabel networks of just
48 switches, and thus, we resort to heuristics that achieve
90% of the optimal flow coverage with a 300× reduction in
computational overhead.

We contribute the following:
• We formalize dynamic relabeling as an integer linear

program, parameterized by the access-control constraints
of a given security policy.

• We design heuristic algorithms for dynamic relabeling
that achieve near-optimal performance and scale more
efficiently with larger networks.

• We demonstrate the feasibility in deploying MLS policies
in unstable networks through a comprehensive experimen-
tal evaluation.

II. BACKGROUND

In this section, we discuss background on software-defined
networking and formalize multilevel security as it relates to
computer networks. We then highlight the gaps in prior work
that motivate the design of MLS-Enforcer.

A. Multilevel Security
Multilevel security (MLS) systems provide access control

over data by assigning security labels to subjects (e.g., network

1Note that other methods for attesting the state of the running switch
software may be used (perhaps without rebooting). However, any choice of
which will inevitably induce some delay (which, in our evaluation, we simulate
with sleeps to temporarily suspend switch processing).

hosts/IP addresses) and objects (e.g., database tables) and
validating that access constraints are satisfied whenever an
access to an object is requested by a subject [8]. A security
label consists of both a security level and one or more security
categories. A security level is an hierarchical attribute that
indicates the relative authorization power (resp. sensitivity) of a
subject (resp. object)—for example, public, confidential, secret,
or top secret clearance. Security categories are non-ordered
attributes that identify classes of data—for example, financial,
medical, or personal files. A subject’s label can then be defined,
for example, as Lsubject = {secret, {financial,medical}}.
The hierarchy of labels formed by all combinations of levels and
categories form a lattice structure called the security lattice [9].

A label is lesser (or greater) than another if the former is
a lesser level (or a greater level) and/or its categories are a
proper subset (or a proper superset) of the latter’s—otherwise
labels are incomparable (and an access is denied). We will
associate the comparators “lesser” and “greater” with the <
and > symbols, respectively. The security lattice ordering
thus describes the access constraints that must be satisfied to
maintain confidentiality. As an example, an MLS system may
require that data only flow between equivalent labels: for an
object of label Lo = {secret, {financial}} and subject of
label Ls = {public, {financial}}, all data flows Lo → Ls

are denied since public < secret. Here, the less-than sign
indicates that the Public subject has a lower security level
than the Secret object.

B. Role of MLS Policies in Networks

Traditionally, multilevel security systems were used to
control access to databases and operating systems, by making
different data available or presenting data differently to users
of different clearances [10]. For example, a database server
in a military or industrial organization may be shared among
users in both the accounting and engineering departments with
complete mediation over accesses to prevent unauthorized data
disclosure between users in each department [11]. However,
MLS policies have also be deployed in computer networks to
provide access controls between network service endpoints that
produce/consume data for each other [4], [5] and to isolate
traffic between different cloud tenants [6].

The difficulty in deploying an MLS system in a network
stems from the fact that there are multiple hops between the
source of data and its recipient, and thus information is inher-
ently exposed to intermediate subjects (e.g., an ethernet switch,
or a forwarding node in a wireless mesh network), which
may become compromised [12]. Here, security constraints
must also be satisfied across the entire path of each network
flow (i.e., at each intermediate switch) to meet the security
policy. For example, such is the case for isolated, wireless
military networks where resource-limited network nodes are
particularly susceptible to attacks [13]. This task has made
feasible by leveraging a software-defined networking (SDN)
architecture [14], [15]: the decoupling of the network control
and data planes [16] provides an opportunity to run an MLS
system as a network application on the SDN controller with
complete visibility over the network topology and traffic profile.

2

In this setting, the MLS service can be provided transparently
to the entire network; whenever a new flow arrives into the
network, by default, if there is no route to forward it, that flow is
forwarded to the SDN controller be route it (assuming a reactive
approach to flow rule installation). There, the access constraints
can be evaluated over the flow source and destination to
determine if the flow is permitted and, if so, find an appropriate
(secure) path through the network.

MLS offers two benefits unique to network security: (1) fine-
grained isolation of network traffic flows between different trust
domains (i.e., security levels) all using a shared infrastructure
(e.g., in a wired datacenter network or wireless mesh network),
and (2) a reduced threat surface for adversaries within a
particular trust domain. Isolation is enabled by ensuring network
flows are routed through paths in the network deemed secure
(i.e., satisfy security constraints)—thus ensuring adversaries
cannot probe, eavesdrop, or otherwise interact with network
hosts or devices outside of their trust domain [17]. A reduced
threat surface is achieved by leveraging security categories: they
further enforce the principle of least privilege on access to data,
thus preventing unrestricted lateral movement (e.g., network
scanning and traffic analysis) by potential adversaries [18].
In effect, MLS policies can prevent entire classes of recon-
naissance techniques: inter-domain (between trust domains)
host scans, port scans, and vulnerability scans [17] can all be
immediately dropped at access switches if the source host is
not of appropriate security level. This simultaneously prevents
data exfiltration, even if some nodes along a flow path were
to become compromised, since data will not be leaked from
uncompromised network hosts or devices of greater security
levels to lower ones (e.g., from Top-secret hosts to Public hosts).
Moreover, MLS policies can mitigate intra-domain scanning
by restricting access with security categories, and can mitigate
denial-of-service attacks as priorities can be given to certain
security labels to ensure those flows have sufficient bandwidth.

As an illustrative example, consider the simple lattice,
composed of just security levels, shown at the top of Fig. 1.
An MLS policy can enforce that a Secret flow, originating from
the Secret laptop-user, only traverses Secret switches toward a
Secret server, preventing any Public nodes from being able to
eavesdrop on the flow. Without an MLS policy, encryption alone
may suffice to prevent a Public node from directly accessing
the Secret-flow data, but cannot prevent traffic analysis by the
(less-secure) node were it to become compromised [19]. While
end-to-end encryption used together with an MLS policy can
provide greater security, device resource constraints may limit
when encryption can be an available option, whereas the MLS
policy provides strong security guarantees alone.

III. MLS-ENFORCER OVERVIEW

In this section, we detail the network and security model
that MLS-Enforcer operates under, discuss the two MLS
policies that we consider in our design and evaluation, and
provide an illustrative example of the relabeling process.

A. Network and Threat Model
As shown in Fig. 1, the system is composed of nodes (e.g.,

user device, server, or network switch), links, and an SDN

Public

Public

Public

Secret

Secret

Public

Secret

Public < Confidential < Secret < Top secret

Secret

Secret

Public

Secret

Public

SDN Controller

Out-of-band management network

Fig. 1: Network scenario using a 4-level security lattice, with
security labels (logically) given to network switches, servers,
and users by the SDN controller.

controller that orchestrates the network. In MLS-Enforcer,
nodes (with security label LNode) are subjects and network
flows (with security label LFlow) are data objects. A given flow
is labeled with the security label of the source host/server, i.e.,
LFlow = LSource. Moreover, links between nodes can be wired
or wireless; however, as link failures and device movement are
conventionally wireless network problems, MLS-Enforcer
may have larger benefits in wireless environments.

We leverage an SDN architecture to allow a network
administrator to logically assign labels to each network node:
since the SDN controller is topology-aware, we maintain the
label assignments at the controller and thus provide the service
transparently to the entire network. We assume that a set of
labels for endpoints deemed appropriate per the needs of the
organization is given as input to MLS-Enforcer, and the
initial switch labels can be random (as they may be changed). In
other words, we assume that a network administrator assigns the
endpoint security labels based on a relative security assessment
of each device and what traffic classes the device is intended
to send [14]. For example, wireless devices (e.g., laptops)
with unpatched software may be considered relatively insecure
and assigned a lesser security label when they connect to the
network, while wired workstations with up-to-date software
and used within an office building for secure tasks may be
considered relatively secure and given higher security labels
when they are connected to the network. A method for choosing
device labels is outside the scope of our work.

Then, for simplicity we consider all of the network flows
being emitted from the host endpoints as having the same
security label as the endpoint. Note that in future work we will
consider host endpoints being able to emit traffic with different
security labels (e.g., to differentiate between web browsing
and secure file transfer traffic).

In SDNs, as new flows arrive into the network, by default
if there is no route to forward them, they are forwarded to
the controller’s routing application to be routed (assuming a
reactive approach to flow rule installation). MLS-Enforcer
is then designated as the routing application (typically Java-

3

or Python-based under the widely used OpenDaylight [20]
and Frenetic [21] SDN controllers), and it computes secure
network-flow routes and manages network-switch flow tables
via a northbound interface to the SDN controller (typically,
a REST API). Upon receipt of a new flow, MLS-Enforcer
therefore intercepts the request and: (1) identifies the security
label of the flow based on the source IP address, (2) checks if
the data source is permitted to send data to the destination, and
(3) potentially relabels some switches before computing a path
for the flow where the MLS policy constraints are satisfied
between the flow’s label and the label of each node along the
path.

In our threat model, we assume a trusted SDN controller (and
trusted administrator of the shared infrastructure) that makes
labeling and routing decisions and monitors for conditions that
require relabeling. We allow for compromised network hosts
or switches in different trust domains: different tenants in a
cloud network, or different organizations sharing a wireless
mesh infrastructure, may attempt to probe other hosts and
switches, eavesdrop on communication, or engage in isolated
or coordinated link cutting attacks [22].

B. Relabeling Process

MLS-Enforcer can route flows in one of two modes: with
relabeling enabled, or with relabeling disabled (by configuring
an algorithm parameter, as discussed later). In this way,
relabeling can be manually or periodically enabled, or enabled
in response to administrator-specified trigger conditions (e.g., a
link-failure event) to reduce disruption imposed on the network.

Over time, events that change the traffic profile or the
structure of the network (such as link failures) may interrupt
flows and require new routing paths to be found for them. Upon
detection by the SDN controller, MLS-Enforcer’s routing
algorithms adapt by (1) potentially changing some switch
labels (if relabeling is enabled), (2) invoking switch reboots to
reset the switch software into a known/trusted/attestable state,
and (3) recomputing flow routes that meet the security policy
constraints under the new set of labels. This can be seen in
Fig. 2 by observing the label changes from the top part of the
figure to the bottom as a result of a detected link failure. The
new routes are then distributed to switches as flow rules to
realize the new routing configuration.

C. MLS Policies

As the relabeling process must align with the security
policies, we focus our formulations on two security policies that
maintain confidentiality for network flows: Strict and Relaxed
Bell-LaPadula. The strict security policy enforces total isolation
among labels which is typical of current MLS networks. Here,
information may only flow between subjects and objects of
equivalent security labels. As described below and explored
experimentally, the strict policy may overly constrain the
routing path options, leading to under-utilization of network
switches and an inability to route some classes of flows.

The Relaxed Bell-LaPadula (R-BLP) enforces the canonical
BLP policy [8] between the end-points of a flow (e.g., between
source and destination hosts). In the canonical BLP model, a

Public
Public

Public

Secret

Secret

Public

Secret

Secret

Secret

Secret

Public

Secret

Public

x

(Routing up)
(Routing down)

Fail/

Congestion

Public
Public

Public

Secret

Secret

Public

Secret

Secret

Secret

Public

Secret

Public

Public (1) < Confidential (2) < Secret (3) < Top Secret (4)

Level 3 flow

Level 1 flow

Level 3 flow

Level 1 flow

Fig. 2: Network scenario describing how relabeling operates.

source cannot send information to a destination with a lesser
security label than it has. However, BLP allows a source to send
information to a destination with a greater security label. R-
BLP retains the spirit of the BLP model but extends the model
to networks in which there are intermediate nodes between the
source and destination. In the R-BLP model, a source cannot
send information to or through nodes with a lesser security
label than it has, but a source can send information to or
through nodes with a greater security label.

More formally, for all flows, a flow may only be routed
through a switch if LSwitch ≥ LFlow, such that LFlow serves
as the floor for the security labels of switches through which
a flow may be routed. However, aficionados of BLP may
recognize that R-BLP technically allows a switch to route
some flow to another switch of a lesser security label as long
as that switch’s label is greater than or equal to the flow’s
label. Thus, there exists the potential for leakage into potential
side channels (e.g., the switch of lower security level may
perform traffic analysis). In BLP, such switches would need to
be trusted or such an action would be considered a violation
of BLP. In R-BLP, we address this in two ways. First, the
labeling scheme described below constrains the number of
violations allowed in the network (to reduce potential leakage
into side channels). Second, there are techniques available to
protect and validate the switches integrity (i.e., trustworthiness)
and protect the secrecy of communications through encryption
(see Section VI-F). We measure this effect in our evaluation,
however, we leave an assessment of side-channel information
leakage to future work.

4

D. Network Example

Consider the example network scenario in Fig. 2 using the
security public/confidential/secret/top secret security lattice (top
of figure) and enforcing a Relaxed Bell-LaPadula policy. The
flows have a Public user sending a Public flow (green) toward
a Public server and a Secret user sending a Secret flow (blue)
toward a Secret server. Here, the routing algorithms can find
secure paths that completely isolate the flows from one another
(i.e., incidentally satisfying the strict policy). For example, any
Public flows coming from the Public user can reach the Public
servers using only the Public switches.

Now consider a link failure (bottom of Fig. 2). Under the
initial labeling the Secret flows would be blocked since there
would be no alternative secure path. Recognizing this condition,
the controller (or some watchdog service) can enable relabeling.
Then, a possible solution identified by the algorithm would
be to relabel (and securely reboot) a single Public switch to
the Secret level, providing a secure path for the Secret flows.
However, the Public user would no longer have a route to a
Public switch. To accommodate both flows, an option allowed
by the R-BLP policy is to permit the Public flow to be routed
through Secret switches (“routing up”). But, for the flow to be
delivered to a Public server, it must be returned to its original
level, i.e., the Public flow must eventually be delivered back
down to a Public switch (routing down).

R-BLP utilizes such routing up and down as long as the
switches all have a label greater than or equal to the flow’s label.
Our formulation restricts routing down to a limited number of
switches to manage risks.

IV. OPTIMIZATION FORMULATIONS

In this section, we formulate two integer-linear programs
(ILPs) that reflect the two security policies introduced previ-
ously to preserve the confidentiality of information flows: the
strict policy and the Relaxed Bell-LaPadula (R-BLP) policy.
Note that for simplicity we consider security labels just in terms
of security levels; the formulations can be easily extended to
labels with both levels and categories by adding a category-
based term to the access constraints. Further, the proposed
framework can easily be extended with similar constraints to
support organization-specific security policies. We elaborate
on these points in Section IV-C.

We first define several variables used in both policies, and
in Table I we provide the notation used throughout.

Definition 1. A link between switches k and l for a flow j is
called a feasible link (denoted by Xj

k,l) and can be used to
route the flow if those two switches are first-hop neighbors and
the level relationship between the flow j and both switches
satisfies the security policy.

The variable Ik,l denotes whether two switches are neigh-
bors:

Ik,l =

{
1, if there is a direct link between k and l

0, otherwise

TABLE I: Definitions and Notation

Cj Capacity demand of flow j
αj Routing indicator of flow j
Lj Security level of flow j
f(Lj) importance function of flow j
I Set of all switches
J Set of all flows
E Set of all links
S Set of all flow sources
D Set of all flow destinations
Ik,l Indicator of the neighborhood of switches k and l

Xj
k,l flow j link indicator between switches k and l

Y j
k,l flow j decision variable between switches k and l

CS,i Capacity of switch i
Ck,l Link capacity between switches k and l
B Maximum number of route-downs allowed for any flow
Xi Security level of switch i
m Number of security levels
∆Xi Number of levels switch i is changed by
I∆i

Indicator of changing the security level of switch i
M Number of switches whose labels can be changed
∆j Route-down degree limit allowed for flow j

The security levels of flows (denoted by Lj) or switches
(denoted by Xi) form a totally ordered set defined by:

Lj , Xi ∈ {1, . . . ,m}.

The updated security level of switch i is

X
′

i = Xi +∆Xi.

Hence, the set of possible values of the change in switch levels
from relabeling is

∆Xi ∈ {−Xi + 1, . . . ,m−Xi}.

The indicator variable denoting whether a switch’s initial
level was changed is

I∆i
=

{
1, if |∆Xi| > 0,

0, otherwise

We introduce a tunable parameter, M , to allow a network
administrator to limit the number of switches that may have
their labels changed during a single run of the relabeling
algorithm; this in turn can reduce potential disruption caused
by waiting for switch reboots.

A. Labeling for the Strict Policy

In this policy, a flow can neither be routed through a switch
of higher-security level nor through a switch of lower-security
level. Hence, given this assumption, the network is partitioned
into groups comprising the flows of the same security level.
Then, the feasibility of a link (where the switches may have
updated labels) being used for routing a flow is described by
extending the traditional MLS constraint:

Xj
k,l =

{
1, if Ik,l = 1 and Lj = X

′

k = X
′

l

0, otherwise

In other words, a link is feasible for a flow iff the two
switches are of exactly the same security level as the flow. The
optimization problem formulation is given by (1)–(12) below.

5

The objective (1) is to maximize the total capacity of the
served flows in the network, weighing each flow according to
its security level with f(Lj), which can be an arbitrary function,
such as a linear function, quadratic function, etc.2 Constraint (2)
ensures only a feasible link can be chosen for a flow. Basically,
Y j
k,l can be 1 only if Xj

k,l = 1 (the link is feasible). Initiating
(αj = 1) or not initiating a flow (αj = 0) from the source is
described by (3), whereas (4) denotes the last link of a routed
flow (αj = 1) or the flow not being routed (αj = 0). The flow
preservation property (the flow can leave a node only if it has
entered it) is captured by (5). Constraint (6) ensures there are
no loops. The left-hand side of (7) denotes the total capacity
demand of all flows going through switch i. It cannot be larger
than the total link capacity (the right-hand side term of (7)).
Similarly, the left-hand side term of (8) is the total capacity
demand of flows traversing the link between switches k and
l, which cannot be larger than the capacity of that link (Ck,l).
Constraint (9) captures the finite number of switches whose
security labels can be changed. Finally, constraints (10)-(12),
denoting whether a flow is routed, whether it is routed through
the link between switches k and l, and whether a switch level
is changed, respectively, define the decision variables, whose
values can be either 0 or 1.

max

J∑
j=1

Cjαjf(Lj) (1)

s.t.

Y j
k,l ≤ Xj

k,l, ∀k ∈ I ∪ S, ∀l ∈ I ∪ D, (2)∑
k

Y j
sj ,k

= αj , ∀j ∈ J , ∀k ∈ I, (3)∑
k

Y j
k,dj

= αj , ∀j ∈ J , ∀k ∈ I, (4)∑
k

Y j
k,l =

∑
m

Y j
l,m, ∀k ∈ I ∪ S, ∀l ∈ I,

∀m ∈ I ∪ D, ∀j ∈ J , (5)∑
k

Y j
k,l ≤ 1, ∀k, l ∈ I, ∀j ∈ J , (6)∑

k

∑
j

CjY
j
k,i ≤ CS,i, ∀i ∈ I, ∀k ∈ I ∪ S, j ∈ J ,

(7)∑
j

CjY
j
k,l ≤ Ck,l, ∀k, l ∈ I, (8)∑

i

I∆i ≤ M, ∀i ∈ I, (9)

αj ∈ {0, 1}, ∀j ∈ J , (10)

Y j
k,l ∈ {0, 1}, ∀k ∈ I ∪ S, ∀l ∈ I ∪ D, ∀j ∈ J ,

(11)
I∆i

∈ {0, 1}, ∀i ∈ I. (12)

Complexity: This optimization problem belongs to the
class of integer linear programs, which are known to be

2Note that whether or not a flow is served is controlled by the decision
variable αj , whose value is 1 only if flow j is served and otherwise 0.

NP-hard [23]. The problem structure does not allow for an
algorithm with a performance guarantee. Hence, we resort to
a heuristic algorithm suitable for large networks. Nevertheless,
the heuristic algorithms that we present in Section V are
demonstrated to provide near-optimal performance (close to
that obtained by the optimization solver).

B. Labeling for the Relaxed Bell-LaPadula (R-BLP) Policy

With this policy, a flow may be destined toward higher-
security level hosts or be routed up to higher-security level
switches, but not to hosts/switches of a lower-security level
than the flow itself. Therefore, we extend the above formulation
to realize the relaxation on the canonical BLP policy.

Definition 2. A flow traversing any link for which the next-hop
host (destination) or switch is of higher-security level than the
flow is denoted as being routed up (see bottom of Fig. 2).

In allowing routing up, the policy must also potentially allow
the flow to be routed down to lower-level switches again in
order to reach the destination as long as LSwitch ≥ LFlow.
In allowing routing down, we introduce two parameters that
dictate to what degree routing down is permitted. The number
of routing-downs along a flow route is restricted by the routing-
down limit B.

The formulation for R-BLP is identical to the strict policy
except for the link feasibility constraint which is expressed as:

Xj
k,l =

{
1, if Ik,l = 1 and Lj ≤ min{X′

k, X
′
l } and X

′
k −X

′
l ≤ ∆j

0, otherwise

Essentially, besides requiring the two switches being neighbors,
the flow level should be lesser or equal to both switch labels
and the degree of a routing-down should be within the limit.
From the definition of a feasible link, we constrain the number
of security levels a flow can be routed down, which in turn
limits the number of security levels it can be routed up.

Further, we introduce an additional constraint to realize the
routing-down limit B:∑

k

∑
l|X′

k>X
′
l

Y j
k,l ≤ B, ∀k, l ∈ I, ∀j ∈ J . (13)

Complexity: Since the R-BLP formulation (constrained
optimization problem) has the same objective function as the
strict policy and near-equivalent constraints, it is impossible
to provide an approximation algorithm with performance
guarantees in this case neither. Therefore, for this problem
as well we propose low-complexity heuristic algorithms that
achieve near-optimal performance (Section V).

C. Extending the MLS-Enforcer Framework

As noted, our formulations provide a framework for realizing
dynamic deployment of the strict and R-BLP policies under
a standard security lattice, but can be extended to support
organization-specific security levels, categories, and policies.
Here, we elaborate on how to achieve this.

For simplicity, in the optimization formulations we consider
security labels just in terms of the security levels. The

6

formulations can be extended to support security categories by
adding a category-based term to the link feasibility indicator
variable Xj

k,l. First, the security labels of flows (denoted
by Lj) and switches (with updated levels denoted by X

′

i)
should be extended to represent both a level and set of
categories (e.g., Lj = {secret, {financial}}). Then, for
the strict policy, a link is considered feasible (i.e., may
be used to route the flow) under the following condition:
Xj

k,l = 1 ⇐⇒ (Ik,l = 1) and (Lj,level = X
′

k,level =

X
′

l,level) and (Lj,categories = X
′

k,categories = X
′

l,categories).
A similar extension can be applied for the R-BLP policy.

Note that our use of security levels as a representation of the
entire label is just a special case under the use of categories,
where labels with the same level also simply have the same set
of categories. Naturally, both the space of levels and categories
can quickly render the space of possible labels very sparse in
certain organizations and thus make it difficult to find routes
for flows (i.e., it may become difficult to relabel adequately
to satisfy the access constraint for most flows). Therefore, we
defer a more comprehensive investigation of security categories
and the limitations they impose therein to future work.

Just as the formulations can be extended to support cate-
gories, any other organization-specific security policies can be
implemented by similarly extending the link feasibility indicator
variable. For example, a security policy may require rejecting
flows being emitted after a certain time-of-day. To support this
policy, the network administrator may introduce an additional
indicator variable Tj for a flow timestamp (e.g., the time it was
received at the controller application to be routed). Then, it
may check newly arriving flows against a set threshold before
permitting an access and installing the necessary flow rules
to switches: Xj

k,l = 1 ⇐⇒ (Ik,l = 1) and (Lj = X
′

k =

X
′

l) and (Tj < threshold).

V. HEURISTIC ALGORITHMS

As solving the optimization problems for the given policies
is NP-hard, we propose heuristic methods for each policy that
are easily deployed in real networks. We approach the problem
by dividing the relabeling process into two subroutines: (1)
finding potential flow paths and recording conflicts on the paths,
and (2) relabeling selected switches based on the information
collected about their conflicts. In the first subroutine, we extend
Dijkstra’s shortest-path algorithm to find potential flow paths
in the network and record per-flow conflicting switches during
path tracing (i.e., those along a potential flow path that cause
a policy violation). In the second subroutine, we use all of
the conflict information to decide which switches (up to M
switches) to relabel to resolve conflicts.

To accomplish this, we distinguish between two types of
conflicts that a switch level may have with flow levels. Then, the
key idea is to invoke the subroutines iteratively through multiple
phases to resolve each conflict type successively. The strict
policy consists of two phases and the R-BLP policy consists of
three phases. For each successive phase, we enforce constraints
on links that prevent the controller from continuously finding
new paths containing conflict types already resolved. We first

K (4)
D (10)

F (4)

H (1)

J (1)

C (4)

G (1)

Strict policy constraint: node level == flow level

E (3)

B (4)

A (1)

I (2)

K (4) D (10)

F (4)

H (1)

J (1)

C (4)

G (1)

E (4)

B (4)

A (1)

I (1)

Cost = 6

Cost = 1

Cost = 2

Cost = 1

First we find potential paths for flows and
record conflicting switches during path tracing.
Conflicting switches here are E and I along the
minimum conflict path.

Conflicting switches then relabeled to the highest
weighted level traversing the switch to resolve
conflicts: E->4 and I->1. E upgraded from level 3
to level 4. I downgraded from level 2 to level 1.

Level 1 flow

Level 4 flow

Level 1 flow

Level 4 flow

Fig. 3: Example execution of the heuristic for the strict policy.
Minimum conflict paths are found for flows, and conflicting
switches are recorded, and per-level weights are computed for
flows traversing them. Then, conflicting-switch levels are set
to the highest-weighting level to unblock flow paths.

introduce the conflict types and then describe the relabeling
process for both policies.

A. Conflict types

Type (1) conflicts: This type of conflict may arise when a flow
path contains a switch with a different security level than the
flow. Marking switches differing in level as conflicting informs
the relabeling subroutine of the potential need to upgrade
or downgrade the switch level to reduce the switch’s threat
surface. Marking all of these cases as conflicts allows us to
isolate different level flows as much as possible, reducing the
possibility of flows of different levels mingling, and hence the
threat of leakage into potential side-channels. Moreover, this
method will encourage the controller to find similar paths for
similar-level flows to reduce the number of conflicting switches
and limit any disruption caused by invoking relabels/reboots.

Type (2) conflicts: This type of conflict only applies to R-
BLP and may arise when the flow path contains a link whose

7

Input: distance array d, previous-hop array p, flow j
Output: updated distance and previous-hop arrays

1 Q = {j.source}
2 d[j.source] = 0, p[j.source] = null
3 for v ∈ V \ {j.source} do
4 d[v] = ∞, p[v] = null, Q.add(v)
5 end
6 while Q not empty do
7 u = node in Q with smallest d[·]
8 pop u from Q
9 foreach neighbor v of u do

10 if v ∈ rebooting switches then
11 w = abs(j.lvl − v.lvl) + reboot cost
12 end
13 else
14 w = abs(j.lvl − v.lvl)
15 end
16 if RBLP then
17 if (phase1) and (d[u] + w < d[v]) then
18 d[v] = d[u] + w, p[v] = u
19 end
20 else if (phase2) and (d[u] + w <

d[v]) and (j.lvl ≤ v.lvl) then
21 d[v] = d[u] + w, p[v] = u
22 end
23 else if

(phase3) and (d[u] + w < d[v]) and (j.lvl ≤
v.lvl) and (u.lvl − v.lvl ≤ ∆j) then

24 d[v] = d[u] + w, p[v] = u
25 end
26 end
27 else if strict then
28 if (phase1) and (d[u] + w < d[v]) then
29 d[v] = d[u] + w, p[v] = u
30 end
31 else if (phase2) and (d[u] + w <

d[v]) and (j.lvl == v.lvl) then
32 d[v] = d[u] + w, p[v] = u
33 end
34 end
35 end
36 end
37 return d, p

Algorithm 1: MinConflictPath() algorithm.

routing-down degree (after being routed up) between the ends
is larger than that allowed by policy (∆j). In this scenario,
either end of the link can be relabeled. However, downgrading
the head-end of the link may cause additional type (1) conflicts.
Therefore, we mark the tail-end of the link as a conflict so
that the relabeling subroutine will consider it for upgrade and
resolve the level difference.

B. Strict: Two-phase relabeling

In the strict policy, the process of relabeling runs in two
phases, each consisting of two subroutines. In the first phase,
minimum-conflicts paths are found using Dijkstra’s shortest-
path algorithm (with distance array d and next-hop array p),
extended with a custom link metric that is the absolute-value
difference between the next-hop switch security level and the
flow security level (Alg. 1, lines 11 and 14). Since rebooting
a switch imposes a delay, we impose an additional cost on
links containing still-rebooting switches to temporarily reduce

Input: sum per-level and overall switch weight array
sw weights

Output: none
1 sorted = sort per lvl weights(sw weights)
2 for i = 0 −→ len(sorted) do
3 if num relabeled == M then
4 break
5 end
6 if RBLP then
7 if phase1 then
8 sorted[i].lvl = sorted[i].weights[0]
9 end

10 else if phase2 then
11 sorted[i].lvl = max head−∆j
12 end
13 end
14 else if strict then
15 if phase1 then
16 sorted[i].lvl = sorted[i].weights[0]
17 end
18 end
19 num relabeled++
20 end

Algorithm 2: RelabelConflictSw() algorithm.

the number of flows that would be preempted or queued (i.e.,
disrupted) by traversing such switches (Alg. 1, line 11). Type
(1) conflicting switches are then recorded during path tracing
by checking if each switch has the same level as the flow.

After the potential paths are found, conflicting switches
of type (1) are relabeled (up to M switches) to unblock flow
paths. While there are several ways to choose which conflicting
switch to relabel first, the objective is to eventually relabel all
conflicting switches to a converging state. We take a greedy
approach by weighting all the conflicting switches based on
the flows traversing them, and then relabeling the highest-
weighted switches first. We apply the same weighting function
f(Lj) from Equation 1 to flow levels during path tracing to
find the sum per-level and overall weights for each conflicting
switch. We then iteratively select the highest overall-weighted
conflicting switches to relabel first. Similarly, for type (1)
conflicts, the new security level chosen for a conflicting switch
is the security level of the flows that is heaviest at the switch
(index 0 of the sorted per-level weights list in Alg. 2, line 16).

Finally, in phase 2, an additional link constraint is enforced
to prevent paths from encountering additional type (1) conflicts
(Alg. 1, line 31), and the resulting paths (if valid) can be
distributed to the switches as flow rules.

C. R-BLP: Three-phase relabeling

In R-BLP, conflicts of type (1) or (2) may be present since
flows may be routed up over appropriate-level switches. There-
fore, the first phase operates as above by running the shortest-
path algorithm, recording type (1) conflicts by comparing the
switch and flow levels, and relabeling the heaviest conflicting
switches to the heaviest-level at the switch (Alg. 2, line 8).
Then in the second phase, we run the shortest-path algorithm
again and enforce a constraint preventing additional type (1)
conflicts (Alg. 1, line 20). Conflicting switches of type (2) are

8

then recorded during path tracing. As above, the switch at the
end of a conflicting segment of a path is chosen to be relabeled
and set to the minimum possible level that is still within the
bounds of the security policy: the head-end level minus the
maximum allowable routing-down degree ∆j (Alg. 2, line 11).
Note that there might be multiple conflicting links with the
tail-end switch in question, so we choose the link with the
highest weighted head-end switch as the one to resolve.

Finally, in phase 3, another link constraint is enforced to
prevent paths from encountering either type (1) or type (2)
conflicts (Alg. 1, line 23), and the resulting paths (if valid) can
be distributed to the switches as flow rules.

D. Complexity

The heuristic algorithms have three steps: (1) execution of
the shortest-path algorithm, (2) relabeling conflicting switches,
and (3) post-processing to distribute flow rules to switches.

Step (1): Dijkstra’s shortest-path algorithm, followed by path
tracing, is executed once for each flow in J . If E denotes the
set of network links and I the set of network switches, the
running time for this step is:

O (|J | (|E|+ |I| log |I|+ |I|)) = O (|J | (|E|+ |I| log |I|)) ,

where path tracing is upper-bounded by |I|.
Step (2): We first sort switches by their per-level weights

(across the m levels). Then, we sort switches by their highest
weight (i.e., index 0 in the per-level sorted list) and proceed
with relabeling in that order. At most M switches are relabeled.
Therefore, the running time for this step is:

O(|I|m logm+|I| log |I|+M) = O(|I|m logm+|I| log |I|).

Step (3): Finally, the controller performs post-processing on
each flow path to determine which flows can be routed and
which cannot (i.e., violates the security policy or is queued).
The running time for this step is O(|J ||I|).

The total running time of both algorithms is:

O (|J ||E|+ |J ||I| log |I|+ |I|m logm) ,

which is polynomial. In Section VI, we show that these
algorithms are efficient even in large networks. Note that Step
(3) is only executed when relabeling occurs, and the steps are
executed 2× each for the strict policy and 3× for R-BLP.

VI. EVALUATION

In the following, we evaluate the performance and security
properties of MLS-Enforcer. We capture three metrics to
assess network performance: (a) flow coverage, which is the
percentage of flows routed under a given labeling policy, (b)
agility, which is the effort required by the network to adapt
to destabilizing network events (also called convergence time),
and (c) disruption, the percentage of flows queued or preempted
(i.e., not routed immediately or at all). Note that we will refer
to relabeling invocations as the number of time instants at
which relabeling was enabled in MLS-Enforcer’s routing
algorithms (by setting an M > 0). We then measure the risk
associated with routing-up and routing-down under R-BLP.

A. Experimental Setup

For simulation-based experiments, we evaluate the per-
formance of MLS-Enforcer on two widely used network
topologies: mesh and star networks. We also measure the
performance of the labeling process in fat-tree networks (used
more traditionally in wired networks) for juxtaposition. For the
latter, we generate fat-tree networks with a switch port density
of k = 6 using techniques described in prior work [24]. We
use the AT&T North America WAN dataset from Topology
Zoo [25] to generate the star topology, and we generate generic
full-mesh topologies with 20 switches. We then connect hosts
to each switch in the network and assign random levels hosts,
with hosts connected to the same edge switch having the same
level (e.g., Public hosts all connecting to a Public access point).
Initial switch levels are also randomly assigned. We use the
standard security lattice from above: Public (1) < Confidential
(2) < Secret (3) < Top-Secret (4).

For the end-to-end (E2E) traffic, ≈ 50 flows per second are
randomly generated and have source and destination endpoints
selected by appropriate levels (i.e., only create flows that
comply with the enforced policy). We assume that the controller
does not queue flows if they cannot be routed (i.e., that the
source may initiate retries of the flow instead). Flow durations
are set to an average of 1 s, to assess performance in the worst-
case scenario of consistently changing flow patterns. However,
we experimented with longer flow durations and found that
there was no detectable effect on performance. We then perform
relabeling every 100 s and assign a switch reboot time of 10 s
(verified experimentally on virtual switches [26]3).

We also implement the proposed relabeling algorithms as a
prototype SDN controller application and perform experiments
on a virtual SDN testbed with Mininet [29] and the POX SDN
controller [30]. As designed, the labels are maintained entirely
at the controller (where the controller is aware of the given
IP-address-to-label mapping), and we evaluate the ability of the
application to route flows securely under a fat-tree topology.

We use the Gurobi [31] solver to find optimal solutions,
where quadratic flow weighting is used in the optimization
formulations and heuristic algorithms, i.e., f(Lj) = L2

j , to
give high priority to high-security flows. We also experimented
with other flow weighting functions, such as linear (e.g.,
f(Lj) = Lj), cubic (e.g., f(Lj) = L3

j), and other higher
degree polynomials, with similar conclusions drawn. Due to
space limitations, we do not include figures for those results.

B. Coverage and Running Time (Simulation)

Coverage: Fig. 4 (top left) shows the results of our first set
of experiments. The optimization solver for R-BLP achieves
≈ 99% and the heuristic reaches ≈ 95% flow coverage for the
mesh network within 5 relabeling invocations (M = 0.1). The
top middle and right graphs show that the solver and heuristic
also maintain high coverage in the fat-tree and star networks
in steady-state. Note that the visible coverage high/low spikes
indicate moments where flows were queued awaiting switch
reboots following relabeling. The heuristic with M = 0.1 is

3Fast-reboot features in commercial switches [27], [28] take ≈ 25 s, which
causes disruption but has no effect on coverage (see below).

9

0 500 1000
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0
C

ov
er

ag
e

(%
)

S-OV
S-M0.1

H-OV
H-M0.1

0 500 1000
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e
(%

)

S-OV
S-M0.1

H-OV
H-M0.1

0 500 1000
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e
(%

)

S-OV
S-M0.1

H-OV
H-M0.1

S-OV
S-M0.1

H-OV
H-M0.1

0 500 1000
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e
(%

)

0 500 1000
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e
(%

)

S-OV
S-M0.1

H-OV
H-M0.1

0 500 1000
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e
(%

)

S-OV
S-M0.1

H-OV
H-M0.1

Fig. 4: Coverage in the mesh (left), fat-tree (middle), and star (right) topology for the R-BLP (top) and strict (bottom) MLS
policies (S=opt. solver, H=heuristic, OV=obj. value, M0.1=M is 0.1).

able to achieve 90% of the maximum objective value (i.e.,
90% of the maximum weighted network capacity of routed
flows). For comparison, prior MLS networks [14] have only
shown to be able to route approximately 60% of network flows
under similar network topologies for a 4-level lattice. Here,
as expected, we observe that for both the optimization solver
and heuristic the convergence is faster with a larger M and
shorter relabeling period. We note that experiments with larger
networks yielded quantitatively similar coverage results because
they only enabled more potential flow paths. In contrast, the
limited number of paths in very small networks (e.g., less
than 20 switches) already subjects them to low flow coverage
(e.g., < 50% coverage), and the issue is only exacerbated
by destabilizing network events. These networks may require
alternative secure-routing approaches.

Moreover, the reboot time had no detectable effect on
coverage. More complex security lattices (e.g., composed
of several different levels or categories) may induce lower
coverage if there are not an adequate number of paths
to route flows through (i.e., if the network is too small).
Notwithstanding, the heuristic algorithm (red line) maintains
nearly the same coverage as the solver (black line), for all
three topologies, to within ≈ 10% of the optimal for R-BLP
and within ≈ 15% for the strict policy (experiments on other
topologies yielded similar results).

As to policy, the strict policy performed similar to R-BLP
in the mesh network, had a (non-negligible) 10% coverage
loss in the fat-tree network, and performed substantially worse
(≈ 20− 70% coverage) than R-BLP (≈ 80− 100% coverage)
in the star network topology—hence motivating R-BLP. Here,
the star network did not have enough redundant switches/inter-
connectivity to establish a set of non-intersecting paths for

all labels. Note that the delay in convergence to the optimal
or near-optimal is a reflection of the network startup from a
random state, which would occur just once in practice.

Running time: Each invocation of the optimization solver
took ≈ 5 minutes for the fat-tree network of 48 switches and
≈ 2 minutes for the star (WAN) network of 25 switches and
mesh network of 20 switches, where we observed the run-
time scaling with a power-law relationship to the number of
switches. This renders the optimization solver impractical to
use in real-world settings for larger networks (e.g., in large
SDN networks, which may manage several thousand switches
in datacenter settings). Conversely, the heuristic took ≈ 1 s
on average (in Python) to relabel switches, up to and scaling
linearly with networks of several hundred switches and flow
arrivals per second. In fact, the heuristic algorithms can compute
a relabeling in < 5 s for a mesh network containing 200
switches. The results strongly indicate that the heuristics are
both necessary and capable of performing relabeling in complex
or large networks with many flows.

C. Network Agility and Recovery (Simulation)

In the next experiments we consider three classes of network
events that effect the network performance: traffic bursts, link
failures, and device movement. The goal here is to assess how
well the network relabeling recovers from (is agile to) to events
ranging from small state changes to catastrophic failures.

Traffic bursts: In the experiments depicted in Fig. 5(a), we
inject a large burst of top-secret flows for several minutes (pink
region). In the mesh topology for the R-BLP policy, the network
coverage immediately drops from 90% to 20%. Relabeling is
periodically enabled in MLS-Enforcer (by setting M =
0.05) every 100 seconds to adapt, bringing the coverage back

10

1500 2000 2500 3000
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0
C

ov
er

ag
e

(%
)

No relabelling
Heuristic, M=0.05

(a) Traffic bursts

1500 2000 2500 3000
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e
(%

)

No relabelling
Heuristic, M=0.05

(b) Link failures

1500 2000 2500 3000
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e
(%

)

No relabelling
Heuristic, M=0.05

(c) Device movement

Fig. 5: Adaptive reconfiguration for different network events in the mesh topology.

D
is

ru
pt

io
n/

 C
ov

er
ag

e
(%

)

Time (s)

(a) Traffic bursts

1500 2000 2500 30000

20

40

60

80

100
D

is
ru

pt
io

n/
C

ov
er

ag
e

(%
)

Time (s)

(b) Link failures

D
is

ru
pt

io
n/

C
ov

er
ag

e
(%

)

Time (s)

(c) Device movement

Fig. 6: Time series plots for the mesh topology depicting the disruption caused by switch relabeling in response to dynamic
network events (–: coverage, –: preempted, –: queued).

to the steady-state level and even increasing it beyond 90% (the
TS-level burst traffic dominates the background traffic) within
2-3 invocations. In contrast, without relabeling (black line) the
coverage remains at 20% for the duration of the burst. Note that
the network is also re-adjusted within two relabeling invocations
once the traffic burst is gone. The network adapts quickly in
response to sudden changes in the traffic-level distribution.
We observed quantitatively similar convergence times in the
fat-tree and star topologies, and slightly longer convergence
times under the strict policy.

Link failures: Next, we randomly fail 10% of the network
links and measure performance in the R-BLP/mesh topology.
Shown in Fig. 5(b), coverage drops from ≈ 98% to around 90%.
However, relabeling adapts to these failed links by rerouting
flows over other policy-compliant paths, thus incrementally
bringing the coverage back to ≈ 95% over the next three
relabeling invocations. Notably, at 10% the magnitude of the
coverage drop is manageable, allowing the network to still
maintain high coverage. This is partly due to the high degree of
connectivity in general in the mesh network. Other experiments
for the fat-tree network show that as the volume of links that
fail increases, the ability to route traffic drops significantly
faster, where we see ≈ 60% coverage at 20% link failures,
40% coverage at 30%, and 10% coverage at 50%. We observed
the same negative effects in the star network topology.

Device movement: In our last set of agility experiments,
we relocate 50% of hosts to other parts of the mesh network

(i.e., connect through different access networks). This emulates
devices being relocated to new physical locations (e.g., a server
being moved to a different location inside of a building) or
intermittent connectivity of devices. As shown in Fig. 5(c), the
coverage drops from the initial 98% to 88%. Further, relabeling
enables the network to adapt quickly and reach 95 − 98%
within two invocations. As with the other events, relabeling
of the interior switches enables the network to adapt quickly
in response to shifts in network structure or host distributions.
Note that each relocation event (beginning of the pink zone)
causes a random relocation of hosts. However, as we do not
revert relocated hosts to their original location, each successive
relocation in the non-relabeling network leads to the labeling
being further from optimal (and hence lower coverage).

Notably, we conclude that the agility of the system is closely
dependent on the security policy; policies that impose more
access constraints or use complex security lattices may not
converge as quickly under destabilizing events. Moreover, the
security policy’s flow weighting function f(Lj) also affects
the priority of certain flows and must be tuned appropriately
to reduce the potential for unfair network partitioning (e.g.,
relabeling still-alive switches to accommodate a relatively small
set of Secret flows but block a larger set of Public flows).

D. Disruption (Simulation)
We define two kinds of disruption: preempted, where a flow

that was previously routed is then blocked after relabeling,

11

0 100 200 300 400 500 600 700
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0
C

ov
er

ag
e

(%
)

Heuristic, M=0.10

0 100 200 300 400 500 600 700
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e
(%

)

Heuristic, M=0.10

1 2 3 4 5 6 7 8 9 10

Epoch

0.2

0.4

0.6

0.8

1.0

Pa
ck

et
 L

os
s (

%
)

Packet Loss

0.00

0.01

0.02

0.03

0.04

0.05

0.06

R
ou

nd
-T

rip
 T

im
e

(R
TT

)

Fig. 7: Experiments with Mininet, POX SDN controller, and MLS-Enforcer controller application. From left to right: coverage
under normal conditions, agility in response to link failures, and disruption in response to link failures (RTT and packet loss).

and queued, where a flow traverses a path containing a still-
rebooting switch. Fig. 6 shows a simulation of each event class
for R-BLP on the mesh topology. In general, only ≈ 35% of
flows from hosts that were relocated and ≈ 15% of flows from
failed links are preempted at the start of the dynamic event, but
otherwise the heuristic relabeling algorithms does not preempt
flows. The former is due to hosts which had active flows before
moving (red line) and the latter due to active flows using failed
links and not having a secure path found at the instant the
failure is detected.

On the other hand, switch reboots cause flows to be queued.
For link failures and device movement, we observe an average
of 30−40% disruption caused by queueing. While a significant
proportion of flows, disruption is naturally heavily dependent
on switch reboot times, although disruption can be mitigated
with lower relabeling frequencies, manually initiating the
relabeling algorithm, development of efficient fast-boot features
on switches [27], [28], or with a smaller M . A direction for
future work is developing selective relabeling algorithms that
restrict which switch labels may change to provide guarantees
about disruption caused to certain flow levels. Note that for the
strict policy we observed slightly less disruption. We noticed
quantitatively similar results in the fat-tree and star topologies.

E. Coverage, Agility, and Disruption (Mininet)

We then evaluated a prototype SDN controller application
(implementing the heuristics) in a Mininet network environment
that reflected similar simulation parameters (network size and
the R-BLP policy). We generate new flows (as a series of
ICMP packets) from hosts every 60-second time epoch. Using
a relabeling period of 100s, we then capture measurements by
sampling the flow coverage observed by the controller every
second. As shown in Fig. 7, under the R-BLP policy in a
fat-tree topology, the routing application achieves > 90% flow
coverage within a single relabeling invocation (at M = 0.1),
from a random assignment of switch labels. This demonstrates
a significant improvement over the coverage granted by prior
MLS routing systems [14] (60%) and comparable to the
successful packet delivery ratio (> 90%) measured in prior
works for similar network sizes [32].

We then measured the ability of MLS-Enforcer to respond
to link failure events by rerouting flows around the failures. The
link failure event occurs during the time period highlighted in

the red region in the middle plot of Fig. 7 (which corresponds
to approximately time 240-420s and time epochs 5-8). We
observed in the Mininet network that failure events similarly
cause a severe drop in flow coverage that last until relabeling
can adjust switch labels to better align with the network traffic
profile. Specifically, we observed that the coverage dropped
from ≈ 95% to ≈ 70% upon detection of the link failure
events, where a new route could not be immediately found for
many flows that were previously routed across the failed links.
However, MLS-Enforcer was able to respond to the event
to reroute the flows around the failure, achieving near-optimal
coverage (≈ 90%) within 5 relabeling invocations.

From the perspective of hosts, we then measured the
disruption on their flows as a result of the link failures (right
side of Fig. 7). Of interest are the average RTT (which
characterizes the latency of queued flows) and packet loss
(which characterizes preempted flows) that flows observe during
and after the link failure. Notably, we found under normal
conditions that both average flow RTT and packet loss of host
ICMP messages are relatively low (at < 0.020s and < 12%,
respectively). However, during the link failure event (which
corresponds approximately to time 240-420s and time epochs
5-8), the average RTT and packet loss peak at ≈ 0.06s and
≈ 20%, respectively. Here, some flows are routed around the
failure (incurring higher RTT and a small amount of packet
loss), and when the links become live again at epoch 8 (and
the controller responds approximately during epoch 9), the
average RTT and packet loss begin to drop as MLS-Enforcer
stabilizes the network.

This supports our observation of high flow coverage and
demonstrates the ability of MLS-Enforcer to adapt quickly.
However, we note that the slight discrepancy in the coverage
observed by the controller and packet loss ratios are caused by
(1) packets lost before the link event (down/up) is detected, and
(2) heavy queueing at the controller that causes some ICMP
packets sent from a host to be dropped.

While we present preliminary results under link failures, in
future work we plan to refine the implementation to provide
a comprehensive analysis of the other network events, as
well as the systems challenges introduced when deploying
MLS-Enforcer in a real network. We refer to Section VII for
insights towards integrating MLS-Enforcer into commonly
used frameworks for deploying various SDN-based network

12

policies. Moreover, to more accurately assess the utility and
security in deploying such policies, we defer to future work
extending monitoring tools to capture finer-grained routing
measurements from different perspectives across the network.

F. Security Analysis

We begin by considering unauthorized flows. Formal MLS
policies prevent under-privileged adversaries from capturing
network traffic for analysis and mitigate the threat of equally-
privileged adversaries (by restricting the potential information
flows to only those permitted per the security labels). In this
way, MLS-Enforcer significantly reduces the capabilities
of adversaries performing network scans or attempting to
eavesdrop on traffic. Specifically, any unauthorized flows
emitted from endpoints or compromised switches are dropped
at the nearest uncompromised neighbor—for example, for an
unauthorized flow from a malicious endpoint, the controller
instructs the access/edge switch to drop the flow, and for an
unauthorized flow from a compromised switch, the controller
similarly instructs the next-hop switch to drop the flow.

We now consider legitimate flows. In R-BLP a limited
number of switches are trusted to “route down” flows, which
may represent some risk (see Section III-C). We measure the
risk impact in the mesh topology with a limit of five switches
per flow (B = 5). From the flow perspective, we find in
our simulation experiments that 36% of the flows are routed
through at least one switch that may route down. However, we
find that only 2.52% of the flows received by these switches on
average may be routed down below a flow’s level (i.e., if the
switch is compromised), indicating that routing targets flows
that profit from being “routed up.”

Nonetheless, risks to the remaining flows can be mitigated
using virtual isolation methods. For example, the authors of
MLSNet suggest that data routed through devices of lower
levels could be encrypted using a level-specific key [14]. The
data would be tunneled and encrypted to prevent intermediate
switches from eavesdropping on the payload or ascertaining
the identities of the endpoints.

Another approach would be to use methods to validate the
integrity of the switch run-time environment using remote
attestation [33] applied to network equipment [34]. If the
network administrators are concerned about traffic analysis,
standard techniques such as traffic shaping [35] can be applied.

Evaluation Summary: Our experiments demonstrate that the
strict and R-BLP policies could be used to effectively govern a
network environment, with associated trade-offs. The relabeling
process converges quickly and adapts to changing conditions
within a few invocations. Moreover, the relabeling process can
be calibrated to be more (faster convergence and recovery) or
less aggressive by setting algorithm parameters appropriately.

VII. DISCUSSION

We have demonstrated that MLS-Enforcer provides an
effective means of constructing and deploying dynamic MLS
policies across an entire network infrastructure. The system
is designed to integrate into SDNs as a controller application,
and therefore has natural extensions into the rich ecosystem

of SDN control plane management solutions (e.g., network
policy deployment and reconciliation systems [36], [37], [38],
[39], [32]). We defer an in-depth analysis of related work
to Section VIII, but discuss here avenues for future work in
improving the utility of MLS-Enforcer and integrating it
into other SDN-based policy management systems.

The focus of MLS-Enforcer lies in maximizing flow
coverage under a set of security constraints imposed on all
network nodes by the security policy. It therefore requires
security labels to be assigned to all network nodes, disallows
ACL policy violations, and runs the optimization solver or
heuristics algorithms to compute an optimal set of switch labels
and flow routes through the network. The relabeling feature
allows achieving good flow coverage (> 90%) compared to
the successful packet delivery ratio (> 90%) measured in prior
works for similar network sizes [32]—but at the tradeoff of
(potentially) high flow-table usage, since we place no restriction
on how many flow rules should be installed on switches to
accommodate flows. However, prior works posited that SDN
switches provide insufficient flow table capacity, which may
lead to performance degradation and network failures [40],
[41], [42], and therefore focus on minimizing the number of
flow rules deployed on the switches (for implementing ACLs
and routing in general) [32], [40], [41], [42].

However, we contend that this argument does not hold in
general. For example, in shared infrastructure settings, the
infrastructure layer may use virtual (software) switches like
Open vSwitch, which has been recently shown to efficiently
handle up to several hundred-thousand flow table entries [43].
Therefore, some networks may be able to accept this tradeoff
at the benefit of enforcing strong security controls across the
entire infrastructure. In the future, hardware SDN switches
may also be able to support similar flow-table capacities.

As prior works [40], [41], [42] have done, a potential
avenue for future work lies in leveraging wildcard flow rules
to reduce flow-table usage and reduce controller interaction
(e.g., matching subnet prefixes as DIFANE [44] does). With
wildcard rules, as long as end-hosts in the same trust domain
are given IP addresses within the same subnets, they could all
match against the same flow rules at switches. Using wildcards
proactively (as opposed to reactively) and on other flow fields
(e.g., protocol numbers) may also help mitigate the impact
on flow-table usage. However, wildcarded fields complicate
policy enforcement and must be carefully co-designed with the
security policy, since matching any flow-field value widens the
(inter- and intra-domain) threat surface for adversarial network
scanning. See Section II-B for a discussion on using security
categories to reduce the threat surface.

Besides constructing dynamic MLS policies,
MLS-Enforcer can integrate into other systems for
policy deployment and reconciliation. For example, prior work
introduced the PrePass-Flow system [32] for predicting
link failures and recomputing the necessary flow rules for
enforcing ACLs and routing around the failures. The system
uses a K-partite graph technique introduced previously in [45]
to find the optimal placement of flow rules (ACLs) onto
switches that minimizes the total number of rules deployed.
MLS-Enforcer could be plugged into PrePass-Flow as

13

a replacement for the K-partite graph technique, extending
security controls across the entire network infrastructure.
Other policy deployment and reconciliation systems, like [38]
(especially for hybrid-SDNs), may similarly be extended
to support MLS-Enforcer, to strengthen the ecosystem
of tools available for providing access control in SDNs,
particularly those with complex network service chains.

VIII. RELATED WORK

A. Confidentiality in Networks

Several defenses have been proposed to protect confidential-
ity in networks such as perimeter firewalls, encryption, and
routing configuration (e.g., using VLANs). However, these
solutions fail to provide comprehensive security guarantees.
They only partially address the problem of confidentiality and
fail to adapt to dynamic network events. Firewall configuration
is complex and error-prone [46]. They are often mis-configured
and either violate the user intended security policy or contain
inconsistencies and inefficiency among the rules irrespective of
the security policy. The inconsistencies could also be among
different firewalls (inter-firewall). Furthermore, firewalls fail
with regard to insider threats, as attacks that can be staged
within the boundary of a perimeter firewall [47].

Similarly, encryption alone cannot ensure confidentiality as
adversaries able to capture network traffic may still be able to
execute traffic analysis attacks [19], [48], [49]. Traditionally,
adversaries have leveraged the packet size of the encrypted
traffic as a side channel to infer information about the victim
such as which websites were visited. As a result several
defenses have been proposed to hide the packet size information,
including packet padding and traffic morphing. Traffic analysis
attacks based on packet counting [48], [49] were also found to
be feasible, whereas defenses such as randomized pipelining
over Tor and traffic morphing were found to be insufficient [49]
against these classes of attack. Even though the packet counting
attacks require identifying the number of packets associated
with each web fetch (which may be challenging in practice),
recent work [19] has demonstrated that adversaries can use the
packet timing information alone to launch successful traffic
analysis attacks. Leveraging MLS security levels and categories,
we can prevent under-privileged adversaries from capturing
traffic for analysis and mitigate the threat of equally-privileged
adversaries (by restricting the potential information flows).

Routing mechanisms such as VLANs offer some degree
of isolation: they have been used in cloud settings (including
SDNs) [50], [51] with multiple tenants to enforce network
traffic isolation by tagging flows in the data plane with a VLAN
unique to each tenant. However, VLANs add an additional
layer of complexity in providing traffic isolation: they require
(1) interacting with switches to manage VLAN assignments
on ports, and (2) impose additional network overhead from
having to tag every network flow for executing access control
checks along a flow path. Thus, they do not scale well for
large multi-tenant networks [52]; in contrast, MLS-Enforcer
ensures an equivalent level of isolation by checking access
control constraints at rule installation time, eliminating the
need for physical VLAN tags to be attached to each flow.

B. Multilevel Security in Networks

Traditionally, multilevel security systems were used to
control access to databases [53] and operating systems [54],
by making different data available or presenting data dif-
ferently to users of different clearances [10]. For example,
a database server in a military or industrial organization
may be shared among users in both the accounting and
engineering departments with complete mediation over accesses
to prevent unauthorized data disclosure between users in each
department [11]. Furthermore, MLS was also used to secure
distributed object oriented systems [55].

Lu et al. [3] introduced such an MLS system for networks
that statically assigned security labels to network switches
(based on a relative security analysis of each device) to
protect confidentiality in network routing without requiring
additional layers of protection, such as encrypted tunnels [5].
This required specialized software to be installed on each
network endpoint. While appropriate for the time, the scale
and dynamics of modern networks render such a system
impractical. The flexibility of SDNs has also been exploited by
MLSNet [14], [15] to enforce MLS policies in network routing
without requiring specialized software to be installed on each
network host and device. Here, the network application at the
SDN controller assigns and (logically) maintains security labels
for each node (e.g., user device, server, or network switch),
and deploys the security policy via flow rules (representing
the inter-switch information flow restrictions) that are enforced
by the switches. This in turn allows the MLS service to be
provided transparently to the network.

Other uses of MLS have been labeling distinct network
endpoints that produce/consume data for each other to enforce
strong access controls [4], [5] and leveraging hypervisor-level
features to isolate network traffic between different tenants in
a cloud network [6]. While these approaches leverage similar
MLS techniques as MLS-Enforcer, they are limited in that
they assume static network behavior and are not designed to
adapt to events that alter the network structure or traffic profile.
This limitation can lead to significant under-utilization and
often a failure to route a large fraction of flows.

C. Deploying and Verifying Network Policies

There is also a large body of work in deploying, verifying,
and reconciling SDN-based network policies. For example,
constructions and specification languages have been introduced
that check for reachability and loop-free forwarding [36],
[56], [57], and network-level access controls (ACLs) per-
service and per-user-identities [32], [58], [59], [60], [61],
among other invariants. However, many of these systems are
limited in that they fail to adapt to dynamic network events—
the policies are either predefined (static) based on the user
identity [60] or service [59], [14], or do not consider the
security of intermediate nodes within the underlying shared
network infrastructure. They, therefore, cannot meet a security
policy such as R-BLP under varying network conditions.

Systems have also been tightly co-designed with SDNs to
check for policy compliance in real time [62], [36], building
on header-space-analysis [56] (a set of tools to model and

14

check network-wide invariants and identify failure conditions)
to incrementally check compliance of state changes such as
flow rule installation and removal. The mechanisms have also
evolved to reduce controller interaction by providing real-time
policy checking entirely within the data plane [45], [32], [63].

More closely related to MLS-Enforcer, efficient de-
ployment and reconciliation of SDN-based ACL whitelisting
policies have been extensively studied [37], [38], [39], par-
ticularly in the presence of network failures [32]. However,
the goal of MLS-Enforcer lies in providing a framework
for constructing instances of dynamic MLS policies. Our
contributions therefore differ in intent from prior works that
focus primarily on deployment or reconciliation of an already-
defined set of policies. Moreover, we formulate optimization
problems reflecting security policies using formally-defined
MLS semantics that protect confidentiality of information
flow—a different realization of access control than traditional
endpoint-whitelisting/ACLs (which may involve manual com-
position [38]) that these prior works had not considered.

Besides the functional goal of MLS-Enforcer, the design
also differs significantly from prior works on dynamic ACL
deployment. In particular, recent works have emphasized
the increasing threat of the network infrastructure itself
becoming compromised, besides potentially malicious network
endpoints—from exploiting weakly protected admin web
interfaces to bugs in the switch operating system software
and hardware backdoors [64]. These insights motivate our
design to extend dynamic ACL deployment beyond endpoint-
whitelisting to realize formal (and dynamic) information-flow
guarantees across an entire network infrastructure (i.e., across
both endpoints and forwarding devices). As prior works have
done [37], MLS-Enforcer assigns to network endpoints a
security class/group (via a security label) based on a relative
security assessment of each device or other labeling scheme
for associating devices with particular trust domains. However,
MLS-Enforcer also assigns security labels to switches,
which may change over time to align with network conditions.

Moreover, the optimizations introduced in prior works
focus primarily on labeling network endpoints and minimizing
“unwanted” traffic in the network, the number of ACL policy
violations, and on the number of ACL policies installed on
switches [32], [45]. In contrast, we assign security labels to
all network nodes, disallow ACL policy violations (thereby
disallowing any “unwanted” traffic), and focus on maximizing
flow coverage (at the tradeoff of more ACL policies being
installed; i.e., higher flow-table usage). MLS-Enforcer still
achieves comparable flow coverage (> 90%) to the successful
packet delivery ratio (> 90%) measured in prior works for
similar network sizes [32]. We have already elaborated on the
implications of this tradeoff in Section VII.

IX. CONCLUSION

In this work, we introduced MLS-Enforcer, a system that
extends network-level MLS capabilities to unstable networks.
We envision MLS-Enforcer as a network application running
on an SDN controller, providing the service transparently to
the entire network. The flexibility of SDNs allows the system

to relabel network nodes in response to evolving traffic and
policy profiles, thus allowing the network to remain agile in
the face of instability. We modeled network adaptivity as an
integer linear program that enables network administrators to
maximize the overall utility capacity of the network under
the security constraints of the given information-flow security
policy. We then developed polynomial-time heuristic relabeling
algorithms that scale more efficiently with larger networks.

We assessed the system performance and security properties
by focusing on four evaluation metrics: coverage, agility,
disruption, and security risk. Through extensive evaluation,
we observed that the system performed well under several
network topologies, policies, and destabilizing network events.
We showed that MLS-Enforcer can optimally relabel the
network to support 90%+ of flows under normal conditions
and quickly converge under changing needs. Moreover, we
showed that the heuristic algorithms can achieve 90% of the
optimal flow coverage with a 300× reduction in computational
overhead—thus demonstrating that it is feasible for formally
secured networks to be deployed in diverse and unpredictable
environments. In future work, we will consider different
MLS policies and extend the optimization framework to other
objective functions, such as minimizing the total number of
links on which there are route-down paths over all flows.

ACKNOWLEDGMENTS

The authors would like to thank Ryan Sheatsley, Yohan
Beugin, Eric Pauley, and Sophia Beyda for their feedback and
support on early versions of the paper.

REFERENCES

[1] D. Gonzales, J. M. Kaplan, E. Saltzman, Z. Winkelman, and D. Woods,
“Cloud-trust—a security assessment model for infrastructure as a service
(iaas) clouds,” IEEE Transactions on Cloud Computing, vol. 5, no. 3,
pp. 523–536, 2015.

[2] I. F. Akyildiz and X. Wang, “A survey on wireless mesh networks,” IEEE
Communications magazine, vol. 43, no. 9, pp. S23–S30, 2005.

[3] W.-P. Lu and M. K. Sundareshan, “A model for multilevel security in
computer networks,” IEEE Transactions on Software Engineering, vol. 16,
no. 6, pp. 647–659, 1990.

[4] P. Watson, “A multi-level security model for partitioning workflows over
federated clouds,” Journal of Cloud Computing: Advances, Systems and
Applications, vol. 1, no. 1, 2012.

[5] T. D. Nguyen, M. A. Gondree, D. J. Shifflett, J. Khosalim, T. E. Levin,
and C. E. Irvine, “A cloud-oriented cross-domain security architecture,”
in Proc. of IEEE MILCOM, 2010.

[6] N. Meghanathan, “Review of access control models for cloud computing,”
Computer Science & Information Science, vol. 3, no. 1, pp. 77–85, 2013.

[7] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”
Computer networks, vol. 52, no. 12, pp. 2292–2330, 2008.

[8] D. E. Bell and L. J. La Padula, “Secure computer system: Unified
exposition and multics interpretation,” MITRE CORP BEDFORD MA,
Tech. Rep., 1976.

[9] D. E. Denning, “A lattice model of secure information flow,” Communi-
cations of the ACM, 1976.

[10] G. Pernul, W. Winiwarter, and A. M. Tjoa, “The entity-relationship
model for multilevel security,” in International Conference on Conceptual
Modeling. Springer, 1993, pp. 166–177.

[11] O. S. Saydjari, “Multilevel security: reprise,” IEEE security & privacy,
vol. 2, no. 5, pp. 64–67, 2004.

[12] A. T. Mizrak, Y.-C. Cheng, K. Marzullo, and S. Savage, “Detecting
and isolating malicious routers,” IEEE Transactions on Dependable and
Secure Computing, vol. 3, no. 3, pp. 230–244, 2006.

[13] T. Azzabi, H. Farhat, and N. Sahli, “A survey on wireless sensor
networks security issues and military specificities,” in 2017 International
Conference on Advanced Systems and Electric Technologies (IC ASET).
IEEE, 2017, pp. 66–72.

15

[14] S. Achleitner, Q. Burke, P. McDaniel, T. Jaeger, T. L. Porta, and
S. Krishnamurthy, “MLSNet: A Policy Complying Multilevel Security
Framework for Software Defined Networking,” IEEE Transactions on
Network and Service Management, vol. 18, no. 1, pp. 729–744, 2021.

[15] V. Varadharajan, K. Karmakar, U. Tupakula, and M. Hitchens, “A
policy-based security architecture for software-defined networks,” IEEE
Transactions on Information Forensics and Security, 2018.

[16] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security in software
defined networks: A survey,” IEEE Communications Surveys & Tutorials,
vol. 17, no. 4, pp. 2317–2346, 2015.

[17] S. Roy, N. Sharmin, J. C. Acosta, C. Kiekintveld, and A. Laszka, “Survey
and taxonomy of adversarial reconnaissance techniques,” arXiv preprint
arXiv:2105.04749, 2021.

[18] S. Achleitner, T. La Porta, T. Jaeger, and P. McDaniel, “Adversarial
network forensics in software defined networking,” in Proceedings of
the Symposium on SDN Research, ser. SOSR ’17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 8–20. [Online].
Available: https://doi.org/10.1145/3050220.3050223

[19] S. Feghhi and D. J. Leith, “A web traffic analysis attack using only
timing information,” IEEE Transactions on Information Forensics and
Security, vol. 11, no. 8, pp. 1747–1759, 2016.

[20] “OpenDayLight SDN controller,” https://www.opendaylight.org/, ac-
cessed: 2016-04-20.

[21] “The Frenetic Project,” https://github.com/frenetic-lang/frenetic, accessed:
2022-02-08.

[22] S. Bellovin and E. Gansner, “Using link cuts to attack internet routing,”
in Proc. of the 12th USENIX Security Symposium, 2003.

[23] M. Conforti, G. Cornuejols, and G. Zambelli, Integer programming.
Springer, 2014.

[24] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 38, no. 4. ACM, 2008, pp. 63–74.

[25] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet Topology Zoo,” IEEE Journal on Selected Areas in
Communications, vol. 29, no. 9, pp. 1765–1775, 2011.

[26] “Openvswitch,” http://openvswitch.org/.
[27] “Loading and managing system images configuration guide, Cisco

IOS Release 15s,” https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/
sys-image-mgmt/configuration/15-s/sysimgmgmt-15-s-book.pdf.

[28] “Sonic fast-reboot (fast-reload) Design,” https://github.com/Azure/SONiC/
wiki/Fast-Reboot.

[29] “Mininet - realistic virtual sdn network emulator,” http://mininet.org/,
accessed: 2017-11-06.

[30] “Pox - python based sdn controller framework,” http://www.noxrepo.org/
pox/about-pox/, accessed: 2015-11-06.

[31] “Gurobi,” http://gurobi.com.
[32] M. Ibrar, L. Wang, G.-M. Muntean, A. Akbar, N. Shah, and K. R. Malik,

“Prepass-flow: A machine learning based technique to minimize acl policy
violation due to links failure in hybrid sdn,” Computer Networks, vol.
184, p. 107706, 2021.

[33] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, “Design and
Implementation of a TCG-based Integrity Measurement Architecture,” in
Proc. of the 13th USENIX Security Symposium, 2004.

[34] Trusted Computing Group, “TCG guidance for securing network
equipment using TCG technology,” https://trustedcomputinggroup.org/
wp-content/uploads/TCG Guidance for Securing NetEq 1 0r29.pdf.

[35] C. V. Wright, S. E. Coull, and F. Monrose, “Traffic morphing: An
efficient defense against statistical traffic analysis.” in NDSS. The
Internet Society, 2009. [Online]. Available: https://www.bibsonomy.org/
bibtex/265c4a9c5d1a7fc7e9cd55cf6edeef6dc/dblp

[36] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in Presented as part of the 10th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 13), 2013.

[37] M. Ali, N. Shah, and M. A. K. Khattak, “Dai: Dynamic acl policy
implementation for software-defined networking,” in 2020 IEEE 17th
International Conference on Smart Communities: Improving Quality of
Life Using ICT, IoT and AI (HONET). IEEE, 2020, pp. 138–142.

[38] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee, C. Clark,
Y. Ma, P. Sharma, and Y. Zhang, “Pga: Using graphs to express and
automatically reconcile network policies,” ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4, pp. 29–42, 2015.

[39] S. Pisharody, J. Natarajan, A. Chowdhary, A. Alshalan, and D. Huang,
“Brew: A security policy analysis framework for distributed sdn-based
cloud environments,” IEEE transactions on dependable and secure
computing, vol. 16, no. 6, pp. 1011–1025, 2017.

[40] J.-P. Sheu, W.-T. Lin, and G.-Y. Chang, “Efficient tcam rules distribution
algorithms in software-defined networking,” IEEE Transactions on
Network and Service Management, vol. 15, no. 2, pp. 854–865, 2018.

[41] Y. Guo, H. Luo, Z. Wang, X. Yin, and J. Wu, “Routing optimization with
path cardinality constraints in a hybrid sdn,” Computer Communications,
vol. 165, pp. 112–121, 2021.

[42] R. Bauer and M. Zitterbart, “An optimization-based approach for flow
table capacity bottleneck mitigation in software-defined networks,” arXiv
preprint arXiv:2109.08482, 2021.

[43] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross,
A. Wang, J. Stringer, P. Shelar et al., “The design and implementation
of open {vSwitch},” in 12th USENIX symposium on networked systems
design and implementation (NSDI 15), 2015, pp. 117–130.

[44] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based
networking with difane,” ACM SIGCOMM Computer Communication
Review, vol. 40, no. 4, pp. 351–362, 2010.

[45] R. Amin, N. Shah, and W. Mehmood, “Enforcing optimal acl policies
using k-partite graph in hybrid sdn,” Electronics, 2019.

[46] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and P. Mohapatra,
“Fireman: A toolkit for firewall modeling and analysis,” in Proc. of IEEE
Symposium on Security and Privacy (S&P’06), 2006.

[47] L. Spitzner, “Honeypots: Catching the insider threat,” in Proc. of 19th
Annual Computer Security Applications Conference, 2003.

[48] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo,
i still see you: Why efficient traffic analysis countermeasures fail,” in
2012 IEEE Symposium on Security and Privacy, 2012, pp. 332–346.

[49] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a distance:
Website fingerprinting attacks and defenses,” in Proceedings of the 2012
ACM conference on Computer and communications security, 2012.

[50] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid isolation: A
slice abstraction for software-defined networks,” in Proceedings of the
first workshop on Hot topics in software defined networks, 2012.

[51] D. Drutskoy, E. Keller, and J. Rexford, “Scalable network virtualization
in software-defined networks,” IEEE Internet Computing, vol. 17, no. 2,
pp. 20–27, 2012.

[52] A. Ranjbar, M. Antikainen, and T. Aura, “Domain isolation in a multi-
tenant software-defined network,” in 2015 IEEE/ACM 8th International
Conference on Utility and Cloud Computing (UCC). IEEE, 2015.

[53] X. Qian and T. F. Lunt, “A semantic framework of the multilevel
secure relational model,” IEEE Transactions on Knowledge and Data
Engineering, vol. 9, no. 2, pp. 292–301, 1997.

[54] P. Loscocco, “Security-enhanced Linux,” Linux 2.5 Kernel Summit, San
Jose (Ca) USA, 2001.

[55] V. Varadharajan and S. Black, “A multilevel security model for a
distributed object-oriented system,” in [1990] Proceedings of the Sixth
Annual Computer Security Applications Conference. IEEE, 1990.

[56] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in Presented as part of the 9th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
12), 2012, pp. 113–126.

[57] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and
S. T. King, “Debugging the data plane with anteater,” ACM SIGCOMM
Computer Communication Review, vol. 41, no. 4, pp. 290–301, 2011.

[58] B. Tian, X. Zhang, E. Zhai, H. H. Liu, Q. Ye, C. Wang, X. Wu, Z. Ji,
Y. Sang, M. Zhang et al., “Safely and automatically updating in-network
acl configurations with intent language,” in Proceedings of the ACM
Special Interest Group on Data Communication, 2019, pp. 214–226.

[59] J. Matias, J. Garay, A. Mendiola, N. Toledo, and E. Jacob, “Flownac:
Flow-based network access control,” in 2014 third European workshop
on software defined networks. IEEE, 2014, pp. 79–84.

[60] A. Hesham, F. Sardis, S. Wong, T. Mahmoodi, and M. Tatipamula, “A
simplified network access control design and implementation for m2m
communication using sdn,” in 2017 IEEE Wireless Communications and
Networking Conference Workshops (WCNCW). IEEE, 2017, pp. 1–5.

[61] S. T. Yakasai and C. G. Guy, “Flowidentity: Software-defined network
access control,” in 2015 IEEE Conference on Network Function Virtual-
ization and Software Defined Network (NFV-SDN). IEEE, 2015.

[62] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
Verifying network-wide invariants in real time,” in 10th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
13), 2013, pp. 15–27.

[63] J. Liu, Y. Li, H. Wang, D. Jin, L. Su, L. Zeng, and T. Vasilakos,
“Leveraging software-defined networking for security policy enforcement,”
Information Sciences, vol. 327, pp. 288–299, 2016.

[64] K. Thimmaraju, L. Schiff, and S. Schmid, “Outsmarting network security
with sdn teleportation,” in 2017 IEEE European Symposium on Security
and Privacy (EuroS&P). IEEE, 2017, pp. 563–578.

16

https://doi.org/10.1145/3050220.3050223
https://www.opendaylight.org/
https://github.com/frenetic-lang/frenetic
http://openvswitch.org/
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sys-image-mgmt/configuration/15-s/sysimgmgmt-15-s-book.pdf
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sys-image-mgmt/configuration/15-s/sysimgmgmt-15-s-book.pdf
https://github.com/Azure/SONiC/wiki/Fast-Reboot
https://github.com/Azure/SONiC/wiki/Fast-Reboot
http://mininet.org/
http://www.noxrepo.org/pox/about-pox/
http://www.noxrepo.org/pox/about-pox/
https://trustedcomputinggroup.org/wp-content/uploads/TCG_Guidance_for_Securing_NetEq_1_0r29.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_Guidance_for_Securing_NetEq_1_0r29.pdf
https://www.bibsonomy.org/bibtex/265c4a9c5d1a7fc7e9cd55cf6edeef6dc/dblp
https://www.bibsonomy.org/bibtex/265c4a9c5d1a7fc7e9cd55cf6edeef6dc/dblp

Quinn Burke received his B.S. and M.S. degrees
in Computer Science from the Pennsylvania State
University with a focus on computer security. He is
currently pursuing a Ph.D. in Computer Science at the
Pennsylvania State University. His research interests
include network and systems security, software-
defined networking, and virtualization technologies.

Fidan Mehmeti received the graduate degree in
Electrical and Computer Engineering from the Uni-
versity of Prishtina, Kosovo, in 2009. He obtained
his PhD degree in 2015 at Institute Eurecom/Telecom
ParisTech, France. After that, he was a Post-doctoral
Scholar at the University of Waterloo, Canada, North
Carolina State University and Penn State University,
USA. He is now working as a Senior Researcher
and Lecturer at the Technical University of Munich,
Germany. His research interests lie within the broad
area of wireless networks, with an emphasis on

performance modeling, analysis and optimization.

Rahul George received his B.E. degree in Informa-
tion Science from BMS College of Engineering, India,
in 2017. He obtained his M.S. degree in Computer
Science from the Pennsylvania State University with a
focus on computer security. He is currently pursuing a
Ph.D. in Computer Science at the Pennsylvania State
University. His research interests include network and
software security, intrusion detection, and security-
performance tradeoffs.

Kyle Ostrowski graduated from The Pennsylvania
State University with a Bachelor of Science in
Computer Engineering and was a student researcher
under the supervision of Dr. Thomas La Porta.
His interests include network security and software-
defined networks. Kyle currently works as a Research
and Development Engineer, specializing in firmware
and digital circuits.

Trent Jaeger is a Professor in the Computer Science
and Engineering Department at The Pennsylvania
State University. Trent’s research interests include
systems and software security, on which he has
published over 150 journal and conference papers. He
is also the author of the book ”Operating Systems Se-
curity,” which examines the principles behind secure
operating system designs. Trent has made a variety of
contributions to the open-source security community,
particularly to the Linux operating system. He serves
on the Executive Committee of the ACM Special

Interest Group on Security, Audit, and Control (SIGSAC), is the Steering
Committee Chair for the Network and Distributed Systems Security (NDSS)
Symposium, and is an Editorial Board Member for the Communications of
the ACM and IEEE Security Privacy.

Thomas F. La Porta is the Director of the School
of Electrical Engineering and Computer Science and
Penn State University. He is an Evan Pugh Professor
and the William E. Leonhard Chair Professor in the
Computer Science and Engineering Department and
the Electrical Engineering Department. He received
his B.S.E.E. and M.S.E.E. degrees from The Cooper
Union, New York, NY, and his Ph.D. degree in
Electrical Engineering from Columbia University,
New York, NY. He joined Penn State in 2002. He was
the founding Director of the Institute of Networking

and Security Research at Penn State. Prior to joining Penn State, Dr. La Porta
was with Bell Laboratories for 17 years. He was the Director of the Mobile
Networking Research Department in Bell Laboratories, Lucent Technologies
where he led various projects in wireless and mobile networking. He is an
IEEE Fellow, Bell Labs Fellow, received the Bell Labs Distinguished Technical
Staff Award, and an Eta Kappa Nu Outstanding Young Electrical Engineer
Award. He also won two Thomas Alva Edison Patent Awards. Dr. La Porta was
the founding Editor-in-Chief of the IEEE Transactions on Mobile Computing.
He served as Editor-in-Chief of IEEE Personal Communications Magazine.
He was the Director of Magazines for the IEEE Communications Society and
was on its Board of Governors for three years.

Patrick McDaniel is the William L. Weiss Professor
of Information and Communications Technology and
Director of the Institute for Networking and Security
Research in the School of Electrical Engineering
and Computer Science at the Pennsylvania State
University. Professor McDaniel is also a Fellow of the
IEEE, ACM and AAAS and the director of the NSF
Frontier Center for Trustworthy Machine Learning.
He also served as the program manager and lead
scientist for the Army Research Laboratory’s Cyber-
Security Collaborative Research Alliance from 2013

to 2018. Patrick’s research focuses on a wide range of topics in computer and
network security and technical public policy. Prior to joining Penn State in
2004, he was a senior research staff member at AT&T Labs-Research.

17

	Introduction
	Background
	Multilevel Security
	Role of MLS Policies in Networks

	MLS-Enforcer Overview
	Network and Threat Model
	Relabeling Process
	MLS Policies
	Network Example

	Optimization formulations
	Labeling for the Strict Policy
	Labeling for the Relaxed Bell-LaPadula (R-BLP) Policy
	Extending the MLS-Enforcer Framework

	Heuristic algorithms
	Conflict types
	Strict: Two-phase relabeling
	R-BLP: Three-phase relabeling
	Complexity

	Evaluation
	Experimental Setup
	Coverage and Running Time (Simulation)
	Network Agility and Recovery (Simulation)
	Disruption (Simulation)
	Coverage, Agility, and Disruption (Mininet)
	Security Analysis

	Discussion
	Related Work
	Confidentiality in Networks
	Multilevel Security in Networks
	Deploying and Verifying Network Policies

	Conclusion
	References
	Biographies
	Quinn Burke
	Fidan Mehmeti
	Rahul George
	Kyle Ostrowski
	Trent Jaeger
	Thomas F. La Porta
	Patrick McDaniel

