
Proceedings on Privacy Enhancing Technologies ..; .. (..):1–23

Yohan Beugin*, Quinn Burke, Blaine Hoak, Ryan Sheatsley, Eric Pauley, Gang Tan, Syed Rafiul
Hussain, and Patrick McDaniel

Building a Privacy-Preserving Smart Camera
System
Abstract: Millions of consumers depend on smart cam-
era systems to remotely monitor their homes and busi-
nesses. However, the architecture and design of pop-
ular commercial systems require users to relinquish
control of their data to untrusted third parties, such
as service providers (e.g., the cloud). Third parties
therefore can (and in some instances have) access the
video footage without the users’ knowledge or consent—
violating the core tenet of user privacy. In this paper, we
present CaCTUs, a privacy-preserving smart Camera sys-
tem Controlled Totally by Users. CaCTUs returns control
to the user ; the root of trust begins with the user and is
maintained through a series of cryptographic protocols,
designed to support popular features, such as sharing,
deleting, and viewing videos live. We show that the sys-
tem can support live streaming with a latency of 2 s at
a frame rate of 10 fps and a resolution of 480 p. In so
doing, we demonstrate that it is feasible to implement
a performant smart-camera system that leverages the
convenience of a cloud-based model while retaining the
ability to control access to (private) data.

Keywords: Smart Camera System, Privacy-Preserving,
Complete Mediation, End-to-end Video Encryption,
Fine-grained and Peer-to-Peer Delegation

DOI Editor to enter DOI
Received ..; revised ..; accepted ...

*Corresponding Author: Yohan Beugin: The Pennsylva-
nia State University, E-mail: yohan@beugin.org
Quinn Burke: The Pennsylvania State University, E-mail:
qkb5007@psu.edu
Blaine Hoak: The Pennsylvania State University, E-mail:
bhoak@psu.edu
Ryan Sheatsley: The Pennsylvania State University, E-mail:
sheatsley@psu.edu
Eric Pauley: The Pennsylvania State University, E-mail:
epauley@psu.edu
Gang Tan: The Pennsylvania State University, E-mail:
gtan@psu.edu
Syed Rafiul Hussain: The Pennsylvania State University,
E-mail: hussain1@psu.edu
Patrick McDaniel: The Pennsylvania State University, E-
mail: mcdaniel@cse.psu.edu

1 Introduction
Smart camera systems are changing the way consumers
secure their homes and businesses. Commercial cam-
era systems have been remarkably successful; they have
become the de facto monitoring system, as they offer
the following essential services with plug-and-play sup-
port: (1) watch live and recorded video feeds, (2) share
videos with others, (3) delete recorded videos, (4) re-
cover access to the system, and (5) perform a full fac-
tory reset. Yet, while the market demand for smart cam-
era systems continues to grow rapidly as reported by
Ring [10, 22, 23, 52], Wyze [53], and Arlo [4], consumers
have come to realize that the costs of owning a smart
camera system are not exclusively monetary.

Commercially available smart camera systems fol-
low a threat model that mandates undue trust by de-
sign; the service provider is granted unfettered access to
the video content of any consumer who uses their sys-
tem. Ring has recently come under legal scrutiny [17, 20]
for allowing more than 2,000 government agencies to
directly request videos from users without formal due
process [7, 30, 41, 44]. Perhaps even more troubling,
employees are viewing and annotating live user streams
for research [5, 13] while others are abusing their access
to view and share users’ videos online [25, 46]. More-
over, research has posited that these systems can be
transformed into mass surveillance systems, given their
widespread adoption [8–10, 28, 30, 34, 35, 43]. The mes-
sage behind the underlying design of modern smart cam-
era systems is clear: users do not have control over their
own videos and system, compromising user privacy.

To this end, we answer the following question: can
users afford all of the features present in commercial
smart camera systems, without compromising their pri-
vacy? A cryptographic approach is a plausible way to
protect users’ privacy in that it enables users to solely
assume control over videos stored in the cloud. However,
practical realizations of such systems face several key
challenges: cryptographic protections (e.g., encryption)
incur computational overheads, affecting system perfor-
mance, since stored videos are encrypted; a fine-grained
sharing scheme (i.e., sharing specific video fragments)

Building a Privacy-Preserving Smart Camera System 2

requires a user-controlled key management system; and
generating, storing, rotating, and re-negotiating cryp-
tographic keys poses further challenges on performance
and usability. Troublingly, even if such challenges could
be addressed, recent events have demonstrated that en-
cryption alone is not sufficient to protect users from
abuses by governments through coercion [19, 29]. Thus,
meeting performance, security, privacy, and usability
goals demands a novel approach that is sensitive to the
unique requirements of this domain.

In this paper, we present CaCTUs, a privacy-
preserving smart Camera system Controlled Totally by
Users. Inspired by information privacy laws, CaCTUs is
designed to enforce three privacy goals through known
security properties; (1) the right to not be seen: the user
is assured confidentiality of stored videos and live video
streams, (2) the right of sole ownership: the user (and
only the user) is trusted, and has complete mediation
over access to their data by others, (3) the right to be
forgotten: deleted videos are not recoverable, even in
cases of coercion.

To meet the required feature set of commercial
systems and address the stringent technical challenges
and privacy goals of smart camera systems, we design
CaCTUs as follows: it allows the user to solely assume
control of the smart camera system through a direct
and physical pairing process (that is, without relying
on or trusting third parties); isolates and protects ac-
cess to video footage through encryption, key rotation,
and key management; enables viewing live and stored
videos through performance-aware cryptographic algo-
rithms; supports video deletion and factory reset via
key rotation and management; and provides fine-grained
(i.e., on the scale of seconds) peer-to-peer delegation of
video footage through a binary key tree. We make the
following contributions:
1. We present CaCTUs, a privacy-preserving smart

Camera system Controlled Totally by Users, that
returns controls of the system to users without com-
promising features found in commercial smart cam-
era systems.

2. We perform a functional user evaluation of our sys-
tem and find that CaCTUs is natural and easy to use,
all while meeting our privacy goals.

3. We perform a performance evaluation of CaCTUs on
a Raspberry Pi and find that we can serve a live
video stream at a resolution of 480 p, at a frame
rate of 10 fps, and with a latency of 2 s.

To encourage future privacy-preserving smart camera
systems, we release CaCTUs as open-source software,
available at https://github.com/siis/CaCTUs.

2 Background

2.1 Smart Camera Systems

A smart camera system is a collection of cameras that
are connected to the Internet, allowing owners (i.e.,
those who purchase and configure the system) to view
live and recorded videos of their homes from anywhere.
Most companies sell their systems as an integrated
ecosystem: cameras work with a purpose-built smart-
phone application that allows the owner to view footage,
delegate access, and administer their smart camera sys-
tem. At the core of these systems are five functions: (1)
recording and streaming, (2) sharing (delegation), (3)
deleting, (4) access recovery, and (5) factory reset. Each
function places requirements and motivates the archi-
tecture of the ecosystems available to consumers.
Recording and Streaming. Camera systems allow
owners to view live and recorded footage from all cam-
eras they own using an application on their smartphone,
allowing them to monitor the current status of their
property. As the most fundamental function provided
by camera systems, this is expected to work reliably
and globally: users want to be able to view footage any-
where, and recover footage even in the case of physi-
cal failures of the camera or home Internet connection.
To facilitate this, consumer smart camera systems cur-
rently entrust the data to a cloud provider, streaming
camera data to cloud storage as it is captured and mak-
ing it available to the owner’s device. As a result, access
to the footage is managed by the cloud provider, who
must be trusted to prevent unauthorized access.
Delegation. Owners want to share access to their cam-
era systems with others. We refer to this capability as
delegation. Whether used to provide a house-sitter with
access to live footage during a vacation, or sharing video
of an incident after the fact, this delegation is expected
to be fine-grained, meaning it applies to specific users
(delegatees) for only the portion of time that they need
access. Consumer smart camera systems allow policy
enforcement as a means of delegation: each user has an
attached policy for the time range of live or recorded
footage they may access, and cloud storage mediates
this to prevent delegatees from exceeding their policies.

https://github.com/siis/CaCTUs

Building a Privacy-Preserving Smart Camera System 3

Fig. 1. Overview of the components and actors in the privacy-
preserving smart camera system CaCTUs: the camera devices and
the users’ devices are trusted while the cloud storage provider, the
networks, and any other third party are untrusted.

Deletion. Owners expect the ability to fully delete their
data to prevent further access by any party. The right of
consumers to delete their personal data has been codi-
fied in legal frameworks, such as the European General
Data Protection Regulation (GDPR) [40] and Califor-
nia Consumer Privacy Act (CCPA) [31]. As recorded
data from camera systems are saved to the cloud, owners
must trust cloud providers to delete their data when re-
quested, including copies stored elsewhere in the cloud.
Access Recovery. Since access to smart camera sys-
tems is mediated by a set of credentials (e.g., a user-
name and password), these systems must account for
the possibility of a user losing these credentials. When
authentication is performed by a cloud service, this is
relatively straightforward: the user’s identity is verified
via other means, such as a password reset through email.
As we will discuss, however, such recovery is only trivial
because of the trust assumptions of these systems, and
we will see that this critical function requires careful
thought under other trust models.
Reset. Finally, owners may wish to stop use of the
smart camera system. In this case, they will expect all of
their stored footage to be deleted, access to live footage
revoked, and the device returned to a condition where it
may be set up by another user. This is generally equiv-
alent to a delete operation for all stored data, followed
by resetting the physical camera itself.

2.2 Privacy in Smart Camera Systems

Smart camera systems have been shown to have both
privacy and security risks [5, 7, 12, 13, 25, 30, 41, 44, 46].
As a result, information privacy laws have been passed,
which aim to address expectations of privacy in online
and physical environments (e.g., the California Con-

sumer Privacy Act (CCPA), California Privacy Rights
Act (CPRA), and the European General Data Protec-
tion Regulation (GDPR), among others [6, 31, 32, 38–
40, 42]). However, these legal frameworks often suggest
vague, rather than concrete requirements for enforcing
privacy in specific end-user devices such as smart cam-
eras. Motivated by these recommendations and require-
ments necessary to prevent previously-discussed privacy
incidents, we can achieve a privacy-preserving system by
affording the system owner the following rights :
1. Right to not be seen: the owner is assured that

no unauthorized user can view stored videos or live
video streams.

2. Right of sole ownership: the owner retains full
control of their data and who they trust.

3. Right to be forgotten: deleted videos are not re-
coverable, even in cases of coercion.

In practice, these rights imply that device owners must
have exclusive control over the collection of data, its
uses, and the access delegations to it.

2.3 Threat Model

Our goal in this work is to demonstrate a smart cam-
era system that provides feature parity with commer-
cial systems while placing no trust in a cloud provider
or other third party. As such, we work under a threat
model wherein edge devices (i.e., the smart camera and
end-user devices) are trusted, but the cloud storage
provider, network, and any other third-party service are
untrusted (see Figure 1 for an overview of CaCTUs).

We only trust the devices owned by the users (cam-
eras, smartphones, laptops, or tablets) to securely han-
dle the encryption and decryption keys used in the sys-
tem, and we trust the device manufacturer to provide
us with a camera device that correctly executes its func-
tionality. This additionally implies that supply-chain ex-
ploits against the camera manufacturer are out of scope.
We trust the other applications running on the users’
devices (or that the operating system sufficiently iso-
lates these applications) and we assume that the cryp-
tographic algorithms used provide the advertised guar-
antees (e.g., Diffie-Hellman assumption [14] and RSA
public-key cryptosystem [45]).

We also acknowledge that access under our system
may be universally delegated: once granted access to a
video, a party is not prevented from sharing with oth-
ers or downloading and storing the videos somewhere
else. Partial mitigations to this may be considered, but

Building a Privacy-Preserving Smart Camera System 4

Uninitialized Initialized

Recording (3.3)

Initialization (3.2)
System initialized

Factory reset (3.5)

System uninitialized

Video frame encrypted
and stored in cloud

Uninitialized Initialized

Deleting videos (3.5)

Access Recovery (3.6)

Secrets recovered to new smartphone

Factory reset (3.5)

System uninitialized Encryption keys deleted

Initialization (3.2)

System initialized

Streaming (3.3)

Video streamed to smartphone
until user exits

Delegation (3.4)

Owner shares encryption
keys with a delegatee

Smart
camera

Smartphone
Fig. 2. Overview of the recording and streaming operations; the camera records video frames, encrypts them locally, sends the en-
crypted frames to the cloud, from where the smartphone application downloads them, decrypts them locally, and plays the video. The
right part is the overview of the states and actions in the CaCTUs system for the camera at the top right and the owner’s smartphone
at the bottom right (references indicated between parentheses are the subsections to refer to for more details).

as such sharing can occur outside the purview of our
system complete prevention is not possible. Encrypted
frames are assumed to be publicly accessible (as we do
not trust the cloud to do any access control mediation),
thus we acknowledge that access pattern to the cloud
storage may be leaked in CaCTUs. Ongoing research in
Private Information Retrieval (PIR) or Oblivious RAM
(ORAM) could provide potential mitigations through
the use for example of random accesses and dummy
writes to the cloud storage. Finally, physically tamper-
ing with the devices (modifying the hardware, chip-level
changes to edit the software execution, etc.) and denial
of service attacks are outside the scope of our work.

3 CaCTUs

3.1 Overview

In the following sections, we will describe how CaCTUs
meets the privacy goals described in Section 2 by pro-
viding the following three security properties: (1) confi-
dentiality: stored videos and live video streams cannot

be viewed by unauthorized parties, (2) complete media-
tion: the user fully controls access to their data by oth-
ers, and (3) deletion: deleted videos are not recoverable,
even in cases of coercion. Each subsection motivates the
privacy goals before providing technical details of the
feature. We refer to Appendix A for the notation used
in our cryptographic constructions and algorithms, to
Appendix D for the details of the protocols, and to Ap-
pendix F for the storyboard of the CaCTUs’s smartphone
application. For clarity, we consider only a single cam-
era, though our approach readily generalizes to multi-
camera systems by applying the described protocols to
each camera individually.

Figure 2 shows an overview and state diagram of
CaCTUs. The camera locally encrypts recorded video
frames before uploading them to cloud storage. The
smartphone application performs the reverse opera-
tions: it downloads the frames, decrypts them locally,
and plays the video. Regular key rotation and secure key
management allow the system to support secure stream-
ing, delegation, deletion, recovery, and reset.

Building a Privacy-Preserving Smart Camera System 5

Camera 2 , Smartphone

1 hP Kf−→

2 P Kf−→
h′

f = hash(PKf)
h′

f

?= hP Kf

3 h′
o = hash(PKo) P Ko←− gen(SKo, PKo)

4 h′
o

?= hP Ko

hP Ko←−

5 DH(SKf , PKo) verif←→ DH(SKo, PKf)

6 gen(SKc, PKc)
P Kc−→

(RSA)

7 init(secrets)
secrets←−
(RSA)

gen(escrow)
passphrase

Table 1. Protocol followed by the camera and the owner’s smart-
phone during the initialization, 2 and , respectively correspond
to what is obtained through the visual and Bluetooth channels.

3.2 Initialization

During initialization, the user’s smartphone and camera
establish a trust association used for all other steps, so
the security of this step is critical to that of the system
as a whole. In CaCTUs, we adapt the Seeing-Is-Believing
(SiB) technique introduced by McCune, Perrig, and Re-
iter [33] to establish an authenticated communication
channel between the camera and smartphone when the
devices share no prior context (and without having to
trust any third party). Specifically, we use the visual
channel as an out-of-band means to verify the authen-
ticity of each end of a Bluetooth channel (see Figure 3).

This secure pairing bootstraps the system to allow
the owner of the device to communicate directly with
the camera (for system initialization) while ensuring
confidentiality and integrity. Thus, negotiation of en-
cryption keys can be done without any other party in-
volved. Moreover, the required proximity and physical
interaction between the devices would render attack at-
tempts easily detectable by the system owners. The ini-
tialization protocol between the camera and the owner’s
smartphone application is as follows (see Table 1):
1. A pair of factory-generated asymmetric keys

(SKf , PKf) is present on the camera device, and
the hash of its public key hP Kf

is embedded into
a QR code on the back of the device (recall from
Section 2.3 that the supply chain is trusted). The

Fig. 3. Establishment of a secure and authenticated Bluetooth
pairing to setup CaCTUs by scanning QR codes (visual channel).

owner’s smartphone scans this QR code and stores
its content.

2. The camera and the owner’s smartphone connect
through Bluetooth and the camera sends its pub-
lic key PKf to the owner, who computes the hash
of the camera’s public key h′

f and checks that it
matches the hash retrieved from the QR code.

3. If they match, the owner’s smartphone generates its
own asymmetric pair of keys (SKo, PKo) and sends
its public key PKo through Bluetooth, the camera
computes the hash h′

o of the owner’s public key.
4. The owner points their smartphone’s screen at the

camera. On the screen is displayed the QR code
with the hash of the owner’s public key. The camera
retrieves the content from the QR code and checks
that it matches h′

o.
5. If the key hashes match, both devices now verify

that the other device knows the secret key corre-
sponding to the public key that they advertised ear-
lier. This is can be done for instance by applying
the Diffie-Hellman key exchange to compute their
shared secret and then by exchanging a series of
encrypted messages where both parties prove their
knowledge.

6. The camera then generates a new asymmetric key
pair (SKc, PKc) that it will use for future commu-
nication (to avoid further reliance on the factory-
generated key). The camera then shares its pub-
lic key PKc with the owner through Bluetooth in
an authenticated way using RSA and the factory-
generated asymmetric key pair (SKf , PKf). Note
that we could have used the shared secret computed
at the previous step through Diffie-Hellman, how-
ever, we chose to use RSA to align this step of our
initialization protocol with the future protocols pre-

Building a Privacy-Preserving Smart Camera System 6

sented in CaCTUs as well as because we want authen-
tication of the messages.

7. Next, the owner sends their secrets to the camera
device to complete system setup, this is done in a
secure and authenticated way using RSA, but this
time the new asymmetric key pair of the camera is
used (SKc, PKc). First, they send wifi credentials
of the wifi network the camera should connect to.
Then, they generate and send a seed key that will
be used to derive the keys to encrypt video frames.
Lastly, they send escrow material (protected by a
non-recoverable passphrase) that may be used by
the owner to recover access to the system (see Sec-
tion 3.6 for details about the escrow material). If
necessary, during this step the owner could also con-
figure the cloud storage option they want to use if
different than the default one.

At this point, the system is initialized, the camera be-
gins recording, and the owner can begin executing the
other camera functions.

3.3 Recording and Streaming Videos

Here we describe how to ensure the confidentiality, in-
tegrity, authenticity, and freshness of the recorded video
footage. The video frames and metadata are encrypted
locally at the camera and asymmetrically signed in
blocks of N frames, before being uploaded to cloud
storage. At each key rotation, the camera device se-
curely erases the encryption keys previously used as it
does not need them anymore. To view a video, users
of the system download the encrypted data from the
cloud storage, derive the decryption keys locally (if they
have access to them), and decrypt the frames to rebuild
the video. Thus, only users with access to the appropri-
ate decryption keys can view the footage. We discuss in
Appendix C how to leverage one-time signatures (i.e.,
hashed signatures [18]), to build a scheme that allows
us to sign every frame1. Nonetheless, as the camera is
recording, it performs the following:
1. Consider a block of N frames. Each frame Fi is

recorded at timestamp ti.
2. A key rotation scheme is used to derive encryption

keys for a given frame (this will prove useful for

1 The overhead of asymmetrically signing every frame is suffi-
ciently large that it decreases the performance of the system by
several orders of magnitude; thus the need for hashed signatures.

delegation, discussed in Section 3.4). The rotation
scheme K provides a key ki, the key used to encrypt
frame Fi. An initialization vector IVi is randomly
generated.

{ki = Extract(K, i)|i ∈ J1, NK}

{IVi = RandBytes(16)|i ∈ J1, NK}

3. Next, each frame is symmetrically encrypted
(confidentiality) into the corresponding cipher-
text Ci using the AES algorithm in Galois/Counter
Mode (GCM, chosen for its performance) with a
256-bit key. Ci is then concatenated with IVi and ti
to be hashed into hi (integrity and freshness).

{Ci = AES256Enc(IVi, ki, Fi)|i ∈ J1, NK}

{hi = HMAC(ki, Ci||IVi||ti)|i ∈ J1, NK}

4. A signature σ of the block is computed using the
private key SKc of the camera and the N hashes of
the frames in this block (integrity and authen-
ticity).

σ = Sign(SKc, h1||h2||...||hN)

5. The encrypted and authenticated frames
〈{Ci, IVi, ti|i ∈ J1, NK}, σ〉 are uploaded to the cloud
along with their corresponding metadata (initial-
ization vector used for encryption and timestamp).

Each user who has access to the correct decryption keys
can download these encrypted and authenticated frames
〈{Ci, IVi, ti|i ∈ J1, NK}, σ〉. To view the video, the user
performs the following:
1. We consider a block of N frames of signature σ

downloaded on demand. Each ciphertext Ci, en-
crypted using the initialization vector IVi, corre-
sponds to a frame recorded at timestamp ti .

2. The corresponding symmetric key ki is extracted
from key rotation scheme K. The hash hi of each
ciphertext Ci is computed.

{ki = Extract(K, i)|i ∈ J1, NK}

{hi = HMAC(ki, Ci||IVi||ti)|i ∈ J1, NK}

3. The signature σ of the block is verified with the
public key PKc of the camera and the N hashes of
the frames in this block (authenticity, integrity,
and freshness).

1 ?= V erify(PKc, σ, h1||h2||...||hN)

Building a Privacy-Preserving Smart Camera System 7

Seed key
kABCDEFGH

kABCD kEFGH

kAB kCD kEF kGH

kA kB kC kD kE kF kG kH

Epoch A Epoch B Epoch C Epoch D Epoch E Epoch F Epoch G Epoch H

Fig. 4. Key Tree Construction used by CaCTUs, the keys to be
shared to give access to the corresponding footage are framed.

4. If the signature is correct, each ciphertext Ci is
then symmetrically decrypted into the correspond-
ing frame Fi (confidentiality).

{Fi = AES256Dec(IVi, ki, Ci)|i ∈ J1, NK}

Encryption is performed end-to-end: data is encrypted
locally at the camera before being stored in the cloud
and decrypted locally at the smartphone after being re-
trieved. Furthermore, integrity is ensured using an au-
thenticated encryption scheme, so that the video footage
cannot be tampered with during transmission or stor-
age. Lastly, the identity of the camera is embedded into
the video frames (and signed) so that users can attest
the authenticity of the video footage. This scheme al-
lows the user to verify the integrity, authenticity, and
freshness of an arbitrary set of video frames, so that
they then decrypt the frames and rebuild the video for
playback.

3.4 Delegation

To protect privacy, users must have complete media-
tion over access to their videos. CaCTUs achieves this by
ensuring that the owner has control of the keys used to
encrypt the video footage. However, they may also want
to delegate access to their videos (e.g., to friends or fam-
ily) for different periods of time. Achieving fine-grained
sharing capabilities for delegatees is nontrivial: we want
to support delegation without knowing beforehand to
whom the owners will delegate access or for how long.
To enable this, we rotate the key used to encrypt the
video frames at the end of every epoch (a fixed-size time

Fig. 5. The establishment of a secure and authenticated Blue-
tooth pairing with a shared user’s device to delegate access.

interval). We use a binary key tree construction to fa-
cilitate the management of all the keys for the camera
device, owners, and delegatees. A peer-to-peer pairing
is adopted for sharing keys so that there is no reliance
on a third party.

Recall that frames are encrypted using a symmetric
key derived from a key rotation scheme K. In practice, to
support delegation, this rotation scheme is a binary key
tree, inspired by the key tree introduced by Kocher [27].
The tree is of a fixed depth dK. In the tree, each leaf
node holds some cryptographic key k and covers a spe-
cific epoch: a time interval [tj , tj+1) of fixed-size δK. The
root node of the tree is initialized with a seed key that is
negotiated during the initialization of CaCTUs (see Sec-
tion 3.2). The timestamp of this negotiation is used for
t0, with tj+1 = tj + δK. The leaf nodes in the tree hold
the encryption keys for every epoch. Each node in the
tree can be derived from the root node knowing the
derivation equations and relations between the parent
node and its two children.

Within each epoch, the symmetric key used for each
frame is identical. The derivation of keys is based on a
Hash-Based Key Derivation function (HKDF), which is
a one-way process [24]. If we have kparent, then:

kleft = HKDF (kparent)
kright = HKDF (kparent ⊕ 1)

(1)

Therefore, for a given key in the tree, a user can only
derive the keys below it but not the ones above (see
Figure 4 for an illustration). The binary key tree is use-
ful for several reasons. First, it decreases the amount
of keys that need to be shared with the delegatees, as
the derivation algorithm is publicly known by the Ker-
ckhoffs’s principle and a specific part of the key tree

Building a Privacy-Preserving Smart Camera System 8

can be reconstructed on-demand by a delegatee that is
given access to a node of the tree. Moreover, it is storage
space-efficient, as the key rotation mechanism generates
a large number of encryption keys. When key rotation
happens and the camera device securely erases the pre-
vious encryption keys, the camera device only needs to
save at most dK nodes to keep functioning. Further, it
is simple to find which node is responsible for the en-
cryption or decryption of a specific timestamped frame
(through a binary search). Lastly, it facilitates the re-
covery process for the owners as only a subset of keys
needs to be recovered to rebuild the tree from the escrow
material.

Delegation is supported by giving some keys of
the key tree to each delegatee (an example is given in
Figure 4 where keys to share and their corresponding
epochs are framed). From there, each delegatee can de-
rive the associated keys to correctly decrypt and view
only video footage captured within the time window
they were authorized for. The depth dK and the epoch
size δK are configurable parameters of the system. For
our implementation, we selected dK = 32 and δK = 10 s.
Importantly, this choice of parameters demonstrates the
worst-case performance users can expect from CaCTUs.
Specifically, these parameters result in a key tree that
covers a lifespan of 1362 years at a 10 s level of gran-
ularity. We provide more reasonable parameter choices
(and, thus, expected performance at deployment) in Ta-
ble 2. The size of an epoch δK corresponds to the low-
est delegation granularity achievable in CaCTUs. Dele-
gation uses a peer-to-peer approach similar to the se-
cure and authenticated pairing presented in Section 3.2.
The only difference being that there is no need to use
a factory-generated key and QR code as both devices
have a screen and can therefore generate their initial
asymmetric key pairs dynamically. Exact details of this
protocol can be found in Section D.1.

Lifespan for Storage space
dK δK = 10 s δK = 60 s (worst-case scenario)
24 5 years 32 years 256 MB
26 21 years 128 years 1 GB
28 85 years 511 years 4 GB
30 340 years 2043 years 16 GB
32 1362 years 8172 years 64 GB

Table 2. Lifespan of the key tree for an epoch time δK of 10 s
and 60 s and storage space needed to save to disk the encryption
keys in the worst-case scenario for different depth sizes dK.

3.5 Deleting Videos and Factory Reset

CaCTUs users must be able to delete their videos and
factory reset their system. Owners can achieve this by
deleting select decryption keys (i.e., a subset of nodes
in the key tree) so that the keys below them in the tree
cannot be recomputed. Recall that the camera device is
securely deleting the encryption keys as soon as it does
not need them anymore due to key rotation. As the
keys used to encrypt the video frames are at the leaves
of the key tree, to prevent being able to recompute such
leaves, each node (i.e., key) along the path to the leaf
must also be deleted. Thus, with a tree depth of dK, for
each portion of video content composed of ne epochs to
delete, the upper bound of the number of nodes that
must be deleted from the tree is O(dKne).

To provide an example: in Figure 4, to delete kA (the
key for epoch A), keys {kAB , kABCD, kABCDEF GH}
must also be deleted. Thus, {kB , kCD, kEF GH} must be
saved in this sparser key tree so that the correspond-
ing videos can still be decrypted. The key material in
the escrow material also needs to be updated accord-
ingly. Table 2 presents the storage space required in the
worst-case scenario where every other epoch has been
deleted. Note that in practice, such a scenario is very
unlikely to happen as it will render the system unus-
able. Furthermore, the owner is very unlikely to delete
beforehand keys that would have been used to encrypt
future videos. Thus, in practice far less amount of stor-
age space is required, specifically thanks to our binary
key tree structure that enables dynamic derivation of
lower keys. In this way, the binary key tree allows the
owner to delete video footage at arbitrary time scales.
Note that this operation is indeed equivalent to deleting
the video frames as they can not be correctly decrypted
without the keys, even in cases of coercion.

To factory reset the camera, the owner sends the
request to the camera, timestamped and authenticated
with the secret key SKo of the owner to verify the legiti-
macy of the request. Then, both the camera and owner’s
smartphone delete the key tree K they have access to,
returning both devices to an uninitialized state. See Sec-
tion D.2 for more details.

Note that with this mechanism, delegatees may still
know some decryption keys that were deleted from the
owner’s device. As discussed in our threat model (see
Section 2.3), once granted access to a video, a party is
not prevented anyway from having already shared or
downloaded the video.

Building a Privacy-Preserving Smart Camera System 9

3.6 Access Recovery

In case owners lose access to their smartphone, they
must be able to recover access to the system. However,
in a privacy-preserving system where no third party
is trusted, achieving this is nontrivial. To solve this,
we create escrow material during the initialization step
that contains all of the information needed by the own-
ers to recover access to their system. The escrow ma-
terial is encrypted and stored on the camera. We note
that the escrow material is protected by an unrecover-
able passphrase only known by the owner and is there-
fore not restricted to being stored on the camera. The
escrow material gives access to the following secrets :
– The owner’s asymmetric key pair (SKo, PKo) en-

crypted with a randomly generated key of size
128 bits which representation in hexadecimal cor-
responds to the passphrase displayed to the owner
during initialization.

– The key material necessary to build the key tree
K (for details about this key tree see Section 3.4)
asymmetrically encrypted with the owner’s key.

– The asymmetric public key PKc of the camera (does
not need to be encrypted).

To recover access, owners use their new smartphone to
open a Bluetooth connection to the camera to retrieve
the escrow material. Note that no assumption regarding
the status of the owner has been made so far; anyone
who is in physical range from the camera can request the
escrow material. However, only the owners have knowl-
edge of the recovery passphrase and can use it to de-
crypt the escrow material. Once decrypted, the owner
assumes control of the system from the new smartphone
and can reconstruct the corresponding key tree K to re-
trieve their video footage. More details can be found in
Section D.3.

4 Evaluation
The goal of this section is to evaluate the effectiveness
and efficiency of CaCTUs with respect to four metrics: se-
curity, privacy, usability, and performance. To this end,
we evaluate three research questions:
– RQ1: Does CaCTUs enforce our privacy require-

ments, while offering the same feature set found in
commercial systems?

– RQ2: Is CaCTUs easy to use for end users?

– RQ3: Can CaCTUs operate at sufficient resolution,
frame rate, and latency to meet the needs of smart
camera system owners?

Experimental Setup. Experiments were performed
using a Raspberry Pi 4 Model B with 2GB of RAM,
equipped with a camera module. Our implementation
of the CaCTUs camera system is written in C, while
the paired mobile companion application was written
in Java and installed on a Nokia 4.2 smartphone, run-
ning Android 10. Further evaluation setup details are
described in Appendix B.

4.1 Privacy and Security Analysis (RQ1)

We begin by analyzing how CaCTUs achieves the security
and privacy properties discussed in Section 2.2, as well
as related practical concerns.
Confidentiality. CaCTUs aims to protect user data from
being read by unauthorized third parties. As such, own-
ers manage access to the decryption keys, and any ad-
ministrative actions must be authorized by them. Fur-
ther, this encryption is performed end-to-end: data is
encrypted locally at the camera before being stored in
the cloud and decrypted locally at the smartphone after
being retrieved. As a result, parties who have not been
delegated access through key sharing are unable to view
the encrypted frames, protecting confidentiality of the
footage, which ensures the right to not be seen.
Complete Mediation. The key-tree construction of
CaCTUs ensures that access delegation is performed at a
fine-grained level. Because this delegation must be per-
formed by the owner (who holds the seed key of the key
tree), no other party is able to grant access to footage,
thus providing complete mediation of access. The key
tree ensures this mediation cryptographically: a user
without the seed or delegated key is unable to decrypt
footage regardless of access control on the encrypted
data, assuming the cryptographic primitives are secure.
This enforces the right to sole ownership.
Data Deletion. An emerging property of the previous
two properties is that the owner has sole ownership and
control over the encryption/decryption keys. Thus, if
the owner decides they want to delete all stored videos
in the cloud, they can simply delete their keys, which
makes it impossible for them to view the corresponding
encrypted footage stored in the cloud, even in case of
coercion. This ensures owners’ right to be forgotten.

Building a Privacy-Preserving Smart Camera System 10

Fig. 6. Likert scale evaluation of different statements made by the 10 participants during the functional user evaluation of CaCTUs.

4.2 Functional User Evaluation (RQ2)

We performed a functional user evaluation of our im-
plementation of CaCTUs with ten participants. Studies
have shown that this group size is sufficient (twice the
minimum number) to identify most of the issues within
a system design [36, 37]. The goals were to assess the
functional ease of use of CaCTUs and identify what as-
pects could be improved further. To this end, partici-
pants were asked to initialize the system and use the
different functionalities as if they had just bought it:
view live and recorded streams, share videos with a del-
egatee, recover access after simulating the loss of their
smartphone, and reset the system. The detailed proto-
col that was followed is described in Appendix E. All
institutional requirements were met for this functional
user evaluation of CaCTUs. We obtained approval from
the Institutional Review Board (IRB) of our university
and a consent form was signed by the participants at
the beginning of their session.

Out of the ten participants, four were female and
six male, seven of them were between 20-25 years old
and the three between 45-55 years old.
Goals and Limitations. Our modest goals through
this functional user evaluation of CaCTUs were to assess
whether guided users can perform the functions of the
system that we laid out and identify where our proof-of-
concept of the implementation fell short (with respect
to performance or feature design) and how it could be
improved. As a consequence, our participants knew they
were evaluating CaCTUs. Thus, our functional evaluation
differs from traditional usability studies that may com-
pare different system designs to identify which is the
most usable, has the best interface, or what UX options
are optimal for ensuring that users understand a spe-
cific privacy concept of the system. We defer a more
comprehensive usability study to future work.

User Interface. Overall, the participants thought that
the interface of the implemented smart camera sys-
tem was simple to understand and navigate through.
They liked that for every process there were step-by-
step instructions displayed to them. They noted that
these directions were clear, straightforward, and self-
explanatory.
Secure and Authenticated Pairing. Despite that
pairing requires both setting up a Bluetooth connection
and scanning QR codes, the participants found the pro-
cess simple and easy. They expressed that it was more
straightforward than steps they had to perform with
other systems. They also felt that using both Bluetooth
and a visual channel was more secure even if they did
not explicitly always know why.
Quality of the Footage. As shown in Figure 6, the
participants agreed that the image quality of the video
stream (480 p) and the frame rate (10 fps) were sufficient
for security and surveillance purposes. However, some
believed that the latency of the system was a bit of a
downside as it tended to defeat the initial purpose of
being able to monitor what was recorded by the smart
camera system in real-time. See Section 5 for potential
optimizations to CaCTUs.
Granularity Options. The participants were im-
pressed by the granularity with which they could view
specific segments of video footage (up to the second),
but believed that the same granularity option for dele-
gation was not necessary; they stated that the primary
use case would be to share access for several hours or
days. This concern can be addressed by displaying only
up to the minute and adding an option for more preci-
sion in the settings of the application for instance. The
majority of the participants also expressed desire to have
an option to quickly delegate unlimited access, but then
figured out that they would not be able to revoke such
access without having to reset the system.

Building a Privacy-Preserving Smart Camera System 11

Access Recovery and Factory Reset. Regarding
the recovery process, the participants were divided on
whether the recovery passphrase should be randomly
generated by the system or if it should give the owner
the opportunity to choose it. They felt that they could
lose the recovery passphrase or forget about it if they
did not choose it. However, they agreed that as this
passphrase allows to recover full access to the system,
it might be less secure to let the owners pick their own.
One participant remarked that the ability to recover ac-
cess without needing to trust a third party (i.e., without
using a recovery email address for instance) was inter-
esting.

As shown on Figure 6, most participants found it
important to be able to recover access to and factory
reset their system, as oftentimes owners may want to
recover access (to retrieve videos) before factory reset-
ting it. The participants found the recovery and factory
reset processes easy to perform.
Missing Features. Participants expressed that they
would like to see the following features implemented:
motion detection-triggered recording, remote pairing
and delegation, two-way audio support to listen in on
and remotely speak through devices, password-locked
smartphone application for additional security, and ap-
plication availability across different platforms (e.g., An-
droid, iOS, and web interface). See Section 5 for details
about such extensions to CaCTUs.

4.3 Performance Evaluation (RQ3)

We now evaluate the streaming performance of CaCTUs,
focusing our efforts on three key metrics: latency (delay
from time of recording), stream image resolution, and
frame rate. As a baseline, commercial systems achieve
frame rates of 30 fps in 1080 p (1920 x 1080 pixels), with
a latency of several milliseconds. However, we note that
these systems have been largely optimized to be sold to
consumers, and they do not guarantee similar privacy-
preserving features as CaCTUs. We discuss potential op-
timizations to CaCTUs in Section 5.
System Latency. For a video resolution of 480 p we
obtained a latency of 2 s at a frame rate of 10 fps.
System Bottlenecks. Next, we measure the effect that
each phase of streaming has on the stream latency. The
values have been averaged over 1,000 frames. For this
evaluation, we picked the same parameters as in Sec-
tion 3.4 for a worst-case scenario (i.e., dK = 32 and
δK = 10 s), to show the performance baseline that can be
expected from CaCTUs. Table 3 shows the results when

the camera device is recording for a video quality of
480 p. As shown, the largest contributor to the latency is
the upload/download of the encrypted frames to/from
the cloud storage server during live stream. As previ-
ously stated, we have not optimized this specific point
in our implementation of CaCTUs -which would have the
same contribution to latency in a system not using en-
cryption techniques- but we discuss means to do so in
Section 5. Note that within the same epoch the same
key is used, but between epochs, we need to derive the
new key, that is why the standard deviation is larger
than the average for the key extraction.

Device Operation Delay (ms) σ (ms)

Camera

Key Extraction 0.05 ms 0.2 ms
Frame Encryption 2.8 ms 1.0 ms
Hash 1.9 ms 0.7 ms
Signature 8.8 ms 2.9 ms
Upload 510 ms 420 ms

Smartphone

Download 420 ms 160 ms
Key Extraction 0.02 ms 0.1 ms
Frame Decryption 0.4 ms 0.5 ms
Hash Verification 1.9 ms 0.4 ms
Signature Verification 0.5 ms 0.5 ms

Table 3. Time delay averaged over 1,000 frames and standard
deviation σ for each live stream operation, while recording with a
resolution of 480 p.

5 Discussion
In the following, we discuss potential optimizations for
improving the performance of CaCTUs, practical consid-
erations for deploying it as a commercial system, and
extensions of our approach to other devices.

5.1 Improving Latency

We identify several components that could be improved
to reduce the overall latency of the system, namely;
(1) cryptographic accelerators, (2) network relays, (3)
streaming libraries, and (4) video compression tech-
niques. Such improvements are described below.

As discussed in Section 4, our implementation used
a Raspberry Pi, wherein the (relatively weak) CPU
was responsible for handling all processing, including
encryption. Since cryptographic operations dominate
many of the features in CaCTUs, we expect substantial

Building a Privacy-Preserving Smart Camera System 12

gains in latency by leveraging dedicated cryptographic
accelerators as seen in many other crypto-dominated
applications, such as in IoT [26].

Streaming live video can be demanding on the net-
work. Specifically, popular video streaming platforms
(such as Netflix, Hulu, and Disney Plus) employ a va-
riety of techniques to bring video data as close to the
user as possible. These techniques often take the form
of caches, content delivery networks, or dedicated net-
work infrastructure designed to serve high-bandwidth
content quickly [1, 16, 47]. Naturally, these techniques
could substantially improve the performance of CaCTUs
to be even closer to commercial-grade systems.

The smart camera systems available today use op-
timized streaming protocols to deliver video content
quickly [1]. Given that it was necessary for us to imple-
ment our video streaming protocol from scratch (to sup-
port our encryption and key rotation schemes), we could
see further improvements by augmenting current proto-
cols to support our design. In a similar vein, our current
implementation operates at the frame-level, while com-
mercial systems operate at the block-level (and thus ex-
ploit compression algorithms commonly used in video
streaming applications [3]). Moreover, popular tech-
niques such as adaptive video playback or frame drop-
ping could also be used to improve the throughput of
CaCTUs. We defer such improvements to future work.

5.2 Deploying CaCTUS as a Commercial
System

Here, we highlight some challenges (motivated by no-
table features in commercial systems and suggestions
from our functional user evaluation of CaCTUs) that
should be addressed to realize commercial implemen-
tations of CaCTUs without compromising any of our pri-
vacy goals.
Relaxing Proximity. To uphold our privacy goals, del-
egatees need to be within local proximity of the owners
(e.g., to perform delegation and pairing through the QR
codes). While this was not an area of concern in the
functional user evaluation of CaCTUs since participants
were always close to the camera system, this can be chal-
lenging if users wish to delegate access remotely. We did
conceptually derive a scheme to support this capability,
while upholding our privacy goals. Specifically, CaCTUs

could be extended to asymmetrically2 encrypt the keys
needed by delegatees and upload them to the cloud stor-
age or use another third party service like email, from
where the remote delegatee could retrieve, decrypt, and
then use these keys to access the video stream for some
predetermined period of time.
Revoking Access to Unrecorded Videos. Note that
a similar scheme to the one described in the previous
paragraph could also be used to allow owners to revoke
access to delegatees to unrecorded videos without need-
ing to factory reset the system. The sharing of the keys
only needs to be done periodically at a certain interval
that could be configured by the owner for each delega-
tee.
Supporting Audio. In our current implementation, we
focused on supporting video data only, and not audio.
However, the system design does not prohibit extensions
to support audio-video recording and streaming. The
extension is straightforward: we can treat some audio
sample as a “frame”, as it is done for video, and ap-
ply similar encryption operations. For sampling, a Lin-
ear Predictive Coding (LPC), which is widely deployed
by telephone companies for speech encoding and pro-
cessing, could be used [48]. Moreover, LPC can even be
leveraged to transmit audio in reverse; that is, be ap-
plied so the users could speak into their smartphones
and have the audio replayed through the camera, as
commonly seen in commercial systems.
Supporting Motion Detection. Many commercial
systems support forms of motion detection to notify
users of events they may be interested in viewing. We
find this feature valuable for both users as well as the
camera system in that video recording need only be
saved if motion was detected3. CaCTUs could support
this capability through addition of a physical hardware
sensor or a software solution. This addition would save
significant space in cloud storage systems and reduce
the cost related to storage. In a similar vein older data
could be overwritten at a fixed interval that could be
configured by the owner.
Physical Security. Finally, as explained in our threat
model, we did not take into consideration physical tam-
pering attacks against the camera device. Techniques

2 Clearly, how the public and private keys are computed and
transferred between the owner and the remote delegatee needs
to be done in a security-preserving manner.
3 To mitigate side-channel attacks and to not leak behavior
patterns, meaningless data could be randomly uploaded to the
cloud.

Building a Privacy-Preserving Smart Camera System 13

Right to not be seen Right of sole ownership Right to be forgotten
Camera System Video Encryption Owner Controls Access Only the Owner is Trusted Video Deletion
PrivacyCam [11] 7 (ROI only) 7 7 7

TrustCAM [50] 7 (ROI only) 7 7 (trusts a central station) 7

TrustEYE.M4 [51] 3 7 3 7

SoC-based [21] 3 7 7 (relies on a Trusted Authority) 7

Signcryption [49] 3 7 7 (uses a Key Distribution Center) 7

Pinto [54] 7 (ROI only) 7 7 7

CaCTUs 3 3 3 3

Table 4. Comparison of privacy guarantees of smart camera systems proposed in the literature (ROI stands for Region Of Interest).

such as package design so that the device is tamper-
proof should be explored. Specifically, local storage, bat-
tery, reset buttons, serial ports, firmware, etc., should
be protected to prevent physical access by untrusted
parties.

5.3 Extending to Other Devices

The protocols used in CaCTUs could be easily extended
to other devices recording time-stamped data streams
such as; temperature, humidity level, heartbeat moni-
toring, audio, power usage, etc. As video stream is the
most bandwidth-intensive of these applications, perfor-
mance for such devices is expected to be even better.
Note that in the initialization step of CaCTUs, we lever-
age the fact that both devices (the camera and the
smartphone) have a camera sensors, however, this may
not be the case for other IoT devices, we defer to the
Seeing-Is-Believing (SiB) technique introduced by Mc-
Cune, Perrig, and Reiter [33] for a discussion of the guar-
antees provided in such a case.

6 Related Work
While this work is the first to examine a smart cam-
era system that is privacy-preserving, there is already
a large body of research studying the security of smart
camera systems. Here, we detail the gaps in prior work
and how CaCTUs addresses them. Refer to Table 4 for a
comparison of the privacy guarantees of these systems.

Alharbi and Aspinall introduced a security analysis
framework for IoT smart cameras that weighs the threat
of significant risks (e.g., unencrypted video streaming)
across various platforms [2]. However, it focuses on the
security of the camera device and only partially ad-
dresses some vulnerabilities of other components of the
system. For instance, the authors do not discuss the use

of cloud storage to remotely access recordings, nor pro-
cedures for securely pairing a smartphone and camera.
CaCTUs provides an end-to-end secure solution starting
from camera initialization to protect the secrecy and
integrity of both communications and data.

Haider and Rinner proposed a SoC-based smart
camera that uses physically unclonable functions
(PUFs) to generate encryption keys [21]. The keys are
used to encrypt video frames at the camera before
storing them in remote cloud storage, thus removing
the requirement that the owner trust the cloud ser-
vice provider. However, this approach has several limi-
tations. First, a trusted authority is required to create
camera device fingerprints during key generation; in a
commercial system, the trusted authority will likely be
the manufacturer, whom in general is not trusted by the
camera owner. Moreover, the key extraction procedure
using PUFs only produces a fixed number of encryption
keys, which does not align with the feature-set typi-
cally desired by smart-camera owners—e.g., being able
to delegate camera access to other people with fine gran-
ularity. Finally, as the fingerprint is physically embed-
ded into the hardware, camera owners will likely need
to get a brand new device if the encryption keys are
leaked. CaCTUs addresses these shortcomings by making
the owner (i.e., their smartphone) the root of trust: they
store the secrets and share expendable keys with both
the camera and delegatees. This simultaneously gives
control back to the owner while enabling delegation and
system reset without specialized (or new) hardware.

Winkler and Rinner introduced Trust-
EYE.MP4 [51], a monitoring framework that provides
similar secrecy and integrity guarantees envisioned by
CaCTUs. However, as the same key is used to encrypt all
the videos, they do not address the unique challenges
in delegating access (e.g., how to share and revoke ac-
cess to video data at particular timescales) or deleting
videos. Similarly, Ullah, Rinner, and Marcenaro pro-
posed using signencryption [49] to encrypt and sign

Building a Privacy-Preserving Smart Camera System 14

video frames at once, but they also did not consider
the challenges related to video deletion and delegation.
CaCTUs addresses these issues by storing the system
secrets at the owner’s smartphone and using a secure
key rotation scheme to enable fine-grained delegation.

Finally, PrivacyCam [11], TrustCAM [50], and
Pinto [54] do not fully address the privacy challenges in
a smart camera system as they attempt to solve a prob-
lem of a different nature and setting. These systems try
to protect the anonymity of people or of vehicle license
plates recorded in public spaces by detecting privacy
sensitive regions and selectively encrypting or blurring
them while leaving the rest of the video frame unper-
turbed. However, even this approach is limited in pro-
tecting anonymity: people can still be identified through
their clothes or actions, and blurred videos still disclose
behavior patterns such as when users are at home. More-
over, the system does not address data privacy of the
video recordings.

7 Conclusion
This paper presented CaCTUs, a smart camera system
with popular commercial features that returns control
of videos to the users. In CaCTUs, we provide the owners
with full control over their system, isolation and pro-
tection of the access to the video footage, deletion and
factory reset, as well as peer-to-peer and fine-grained
delegation. We leverage physical and direct pairing for
system initialization (that is, without relying on trust-
ing third parties), performance-aware cryptographic al-
gorithms to support video streaming, key rotation and
management through a binary key tree to provide video
deletion, factory reset, and fine-grained (i.e., on the or-
der of seconds) peer-to-peer delegation of video footage.
Additionally, CaCTUs satisfies performance requirements
necessary to execute the most popular commercial func-
tionalities of smart camera systems, such as live stream-
ing with 2 s of latency at a frame rate of 10 fps and
resolution of 480 p, while protecting the users’ privacy.
CaCTUs serves as an existence proof that smart camera
systems need not compromise the privacy of users to be
afforded the modern capabilities that commercial sys-
tems offer today.

8 Acknowledgment
We would like to thank Christie Warren for her help in
the design of the user interface of the smartphone ap-
plication for this project as well as Dr. Hanrahan for his
valuable feedback on the protocol of the functional user
evaluation of CaCTUs. We also sincerely thank all the
users that have participated in the test and evaluation
sessions of our implementation of CaCTUs.

Funding acknowledgment: This material is
based upon work supported by, or in part by, the
National Science Foundation under Grant No. CNS-
1805310 and Grant No. CNS-1564105, and the U.S.
Army Research Laboratory and the U.S. Army Research
Office under Grant No. W911NF-19-1-0374. Any opin-
ions, findings, and conclusions or recommendations ex-
pressed in this publication are those of the author(s)
and do not necessarily reflect the views of the National
Science Foundation, or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute
reprints for government purposes notwithstanding any
copyright notation hereon.

References
[1] V. K. Adhikari et al. Measurement study of Netflix, Hulu,

and a tale of three CDNs. IEEE/ACM Transactions on
Networking, 23 (2014)(6):1984–1997.

[2] R. Alharbi and D. Aspinall. An IoT analysis framework: An
investigation of IoT smart cameras’ vulnerabilities. In: Living
in the Internet of Things: Cybersecurity of the IoT - 2018,
pages 1–10 (2018). 10.1049/cp.2018.0047.

[3] J. G. Apostolopoulos, W.-t. Tan, and S. J. Wee. Video
streaming: Concepts, algorithms, and systems. HP Labora-
tories, report HPL-2002-260, (2002).

[4] Arlo. Arlo - Investor Relations (2021). URL: https:
//investor.arlo.com/ir-home/default.aspx. Last Accessed:
2021-04-06.

[5] S. Biddle. For Owners of Amazon’s Ring Security Cam-
eras, Strangers May Have Been Watching Too. The Inter-
cept, (2019). URL: https://theintercept.com/2019/01/10/
amazon-ring-security-camera/. Last Accessed: 2020-09-08.

[6] E. D. P. Board. Guidelines 3/2019 on processing of personal
data through video devices (2019). URL: https://edpb.
europa.eu/sites/edpb/files/consultation/edpb_guidelines_
201903_videosurveillance.pdf. Last Accessed: 2021-04-19.

[7] T. Brewster. Smart Home Surveillance: Governments
Tell Google’s Nest To Hand Over Data 300 Times.
Forbes, (2018). URL: https://www.forbes.com/sites/
thomasbrewster/2018/10/13/smart-home-surveillance-
governments-tell-googles-nest-to-hand-over-data-300-
times/. Last Accessed: 2020-09-08.

https://doi.org/10.1049/cp.2018.0047
https://investor.arlo.com/ir-home/default.aspx
https://investor.arlo.com/ir-home/default.aspx
https://theintercept.com/2019/01/10/amazon-ring-security-camera/
https://theintercept.com/2019/01/10/amazon-ring-security-camera/
https://edpb.europa.eu/sites/edpb/files/consultation/edpb_guidelines_201903_videosurveillance.pdf
https://edpb.europa.eu/sites/edpb/files/consultation/edpb_guidelines_201903_videosurveillance.pdf
https://edpb.europa.eu/sites/edpb/files/consultation/edpb_guidelines_201903_videosurveillance.pdf
https://www.forbes.com/sites/thomasbrewster/2018/10/13/smart-home-surveillance-governments-tell-googles-nest-to-hand-over-data-300-times/
https://www.forbes.com/sites/thomasbrewster/2018/10/13/smart-home-surveillance-governments-tell-googles-nest-to-hand-over-data-300-times/
https://www.forbes.com/sites/thomasbrewster/2018/10/13/smart-home-surveillance-governments-tell-googles-nest-to-hand-over-data-300-times/
https://www.forbes.com/sites/thomasbrewster/2018/10/13/smart-home-surveillance-governments-tell-googles-nest-to-hand-over-data-300-times/

Building a Privacy-Preserving Smart Camera System 15

[8] L. Bridges. Amazon’s Ring is the largest civilian surveil-
lance network the US has ever seen | Lauren Bridges. The
Guardian, (2021). URL: http://www.theguardian.com/
commentisfree/2021/may/18/amazon-ring-largest-civilian-
surveillance-network-us. Last Accessed: 2021-05-18.

[9] D. Cameron. Amazon Is Marketing Face Recognition to
Police Departments Partnered With Ring: Report. Gizmodo,
(2019). URL: https://gizmodo.com/amazon-is-marketing-
face-recognition-to-police-departme-1839073749. Last
Accessed: 2020-09-08.

[10] D. Cameron and D. Mehrotra. Ring’s Hidden Data Let Us
Map Amazon’s Sprawling Home Surveillance Network. Giz-
modo, (2019). URL: https://gizmodo.com/ring-s-hidden-
data-let-us-map-amazons-sprawling-home-su-1840312279.
Last Accessed: 2020-01-13.

[11] A. Chattopadhyay and T. E. Boult. PrivacyCam: a Pri-
vacy Preserving Camera Using uCLinux on the Black-
fin DSP. In: 2007 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–8 (2007).
10.1109/CVPR.2007.383413.

[12] C. Cimpanu. Hackers keep dumping Ring credentials online
’for the giggles’. ZDNet, (2019). URL: https://www.zdnet.
com/article/hackers-keep-dumping-ring-credentials-online-
for-the-giggles/. Last Accessed: 2020-01-13.

[13] D. Deahl. Ring let employees watch customer videos, claim
reports. The Verge, (2019). URL: https://www.theverge.
com/2019/1/10/18177305/ring-employees-unencrypted-
customer-video-amazon. Last Accessed: 2020-09-08.

[14] W. Diffie and M. Hellman. New directions in cryptog-
raphy. IEEE Transactions on Information Theory, 22
(1976)(6):644–654. 10.1109/TIT.1976.1055638.

[15] B. Dirks et al. Video for Linux Two API Specification
(2009). URL: https://www.linuxtv.org/downloads/legacy/
video4linux/API/V4L2_API/spec-single/v4l2.html. Last
Accessed: 2021-03-21.

[16] K. Florance. About Netflix - How Netflix Works With ISPs
Around the Globe to Deliver a Great Viewing Experience.
About Netflix, (2016). URL: https://about.netflix.com/
en/news/how-netflix-works-with-isps-around-the-globe-to-
deliver-a-great-viewing-experience. Last Accessed: 2021-05-
28.

[17] Y. Flores. Bad Neighbors? How Amazon’s Ring Video
Surveillance Could be Undermining Fourth Amendment Pro-
tections (2020). URL: https://www.californialawreview.
org/amazon-ring-undermining-fourth-amendment/. Last
Accessed: 2021-05-18.

[18] R. Gennaro and P. Rohatgi. How to Sign Digital Streams.
Information and Computation, 165 (2001)(1):100–116.
10.1006/inco.2000.2916.

[19] A. Greenberg. Two Cases’ Lessons: If Cops Don’t
Know What You Encrypted, They Can’t Make You De-
crypt It (2021). URL: https://www.forbes.com/sites/
andygreenberg/2012/02/24/two-cases-lessons-if-cops-dont-
know-what-you-encrypted-they-cant-make-you-decrypt-it/.
Last Accessed: 2021-08-02.

[20] M. Guariglia and M. Maas. LAPD Requested Ring Footage
of Black Lives Matter Protests. Electronic Frontier Foun-
dation, (2021). URL: https://www.eff.org/deeplinks/2021/
02/lapd-requested-ring-footage-black-lives-matter-protests.
Last Accessed: 2021-05-11.

[21] I. Haider and B. Rinner. Private Space Monitoring with
SoC-Based Smart Cameras. In: 2017 IEEE 14th Interna-
tional Conference on Mobile Ad Hoc and Sensor Systems
(MASS), pages 19–27 (2017). 10.1109/MASS.2017.15.

[22] J. Herrman. Who’s Watching Your Porch? The New York
Times, (2020). URL: https://www.nytimes.com/2020/
01/19/style/ring-video-doorbell-home-security.html. Last
Accessed: 2021-04-06.

[23] B. Huseman. Huseman reply to Wyden, Markey, Van
Hollen, Coons, Peters letter about Ring’s Data Security
Practices (2020). URL: https://regmedia.co.uk/2020/01/
08/ringsenateresponse.pdf. Last Accessed: 2021-04-06.

[24] J. Katz and Y. Lindell. Introduction to Modern Cryptogra-
phy, Second Edition (2014). Chapman & Hall/CRC.

[25] C. Keck. Amazon’s Ring Security Cameras May Have Let
Employees Spy on Customers: Report. Gizmodo, (2019).
URL: https://gizmodo.com/amazons-ring-security-cameras-
may-have-let-employees-sp-1831658669. Last Accessed:
2020-09-08.

[26] P. Kietzmann, L. Boeckmann, L. Lanzieri, T. C. Schmidt,
and M. Wählisch. A Performance Study of Crypto-Hardware
in the Low-end IoT. In: Proceedings of the 2021 Inter-
national Conference on Embedded Wireless Systems and
Networks, pages 79–90 (2021). 10.5555/3451271.3451279.

[27] P. Kocher. Complexity and the challenges of securing SoCs.
In: 2011 48th ACM/EDAC/IEEE Design Automation Con-
ference (DAC), pages 328–331 (2011).

[28] R. Kraus. Ring watched your kids trick or treat and
then bragged about it. Mashable, (2019). URL: https:
//mashable.com/article/ring-halloween-surveillance/. Last
Accessed: 2021-05-11.

[29] D. Kravets. Indefinite prison for suspect who won’t decrypt
hard drives, feds say. Ars Technica, (2016). URL: https:
//arstechnica.com/tech-policy/2016/05/feds-say-suspect-
should-rot-in-prison-for-refusing-to-decrypt-drives/. Last
Accessed: 2021-05-31.

[30] C. Lecher. Ring reportedly outed camera owners to police
with a heat map. The Verge, (2019). URL: https://www.
theverge.com/2019/12/3/20993814/ring-user-location-heat-
map-police-privacy-tool-camera-owners. Last Accessed:
2020-09-08.

[31] C. S. Legislature. TITLE 1.81.5. California Consumer Pri-
vacy Act of 2018 [1798.100 - 1798.199.100] (2018).

[32] C. S. Legislature. The California Privacy Rights Act of 2020
(2020).

[33] J. McCune, A. Perrig, and M. Reiter. Seeing-is-believing:
using camera phones for human-verifiable authentication. In:
2005 IEEE Symposium on Security and Privacy (S P’05),
pages 110–124 (2005). 10.1109/SP.2005.19.

[34] A. Ng. Amazon’s Ring wanted to use 911 calls to activate
its video doorbells. CNET, (2019). URL: https://www.
cnet.com/home/smart-home/amazons-ring-wanted-to-use-
911-calls-to-activate-its-video-doorbells/. Last Accessed:
2021-05-18.

[35] A. Ng. Ring let police view map of video doorbell in-
stallations for over a year. CNET, (2019). URL: https:
//www.cnet.com/news/ring-gave-police-a-street-level-view-
of-where-video-doorbells-were-for-over-a-year/. Last Ac-
cessed: 2020-01-13.

http://www.theguardian.com/commentisfree/2021/may/18/amazon-ring-largest-civilian-surveillance-network-us
http://www.theguardian.com/commentisfree/2021/may/18/amazon-ring-largest-civilian-surveillance-network-us
http://www.theguardian.com/commentisfree/2021/may/18/amazon-ring-largest-civilian-surveillance-network-us
https://gizmodo.com/amazon-is-marketing-face-recognition-to-police-departme-1839073749
https://gizmodo.com/amazon-is-marketing-face-recognition-to-police-departme-1839073749
https://gizmodo.com/ring-s-hidden-data-let-us-map-amazons-sprawling-home-su-1840312279
https://gizmodo.com/ring-s-hidden-data-let-us-map-amazons-sprawling-home-su-1840312279
https://doi.org/10.1109/CVPR.2007.383413
https://www.zdnet.com/article/hackers-keep-dumping-ring-credentials-online-for-the-giggles/
https://www.zdnet.com/article/hackers-keep-dumping-ring-credentials-online-for-the-giggles/
https://www.zdnet.com/article/hackers-keep-dumping-ring-credentials-online-for-the-giggles/
https://www.theverge.com/2019/1/10/18177305/ring-employees-unencrypted-customer-video-amazon
https://www.theverge.com/2019/1/10/18177305/ring-employees-unencrypted-customer-video-amazon
https://www.theverge.com/2019/1/10/18177305/ring-employees-unencrypted-customer-video-amazon
https://doi.org/10.1109/TIT.1976.1055638
https://www.linuxtv.org/downloads/legacy/video4linux/API/V4L2_API/spec-single/v4l2.html
https://www.linuxtv.org/downloads/legacy/video4linux/API/V4L2_API/spec-single/v4l2.html
https://about.netflix.com/en/news/how-netflix-works-with-isps-around-the-globe-to-deliver-a-great-viewing-experience
https://about.netflix.com/en/news/how-netflix-works-with-isps-around-the-globe-to-deliver-a-great-viewing-experience
https://about.netflix.com/en/news/how-netflix-works-with-isps-around-the-globe-to-deliver-a-great-viewing-experience
https://www.californialawreview.org/amazon-ring-undermining-fourth-amendment/
https://www.californialawreview.org/amazon-ring-undermining-fourth-amendment/
https://doi.org/10.1006/inco.2000.2916
https://www.forbes.com/sites/andygreenberg/2012/02/24/two-cases-lessons-if-cops-dont-know-what-you-encrypted-they-cant-make-you-decrypt-it/
https://www.forbes.com/sites/andygreenberg/2012/02/24/two-cases-lessons-if-cops-dont-know-what-you-encrypted-they-cant-make-you-decrypt-it/
https://www.forbes.com/sites/andygreenberg/2012/02/24/two-cases-lessons-if-cops-dont-know-what-you-encrypted-they-cant-make-you-decrypt-it/
https://www.eff.org/deeplinks/2021/02/lapd-requested-ring-footage-black-lives-matter-protests
https://www.eff.org/deeplinks/2021/02/lapd-requested-ring-footage-black-lives-matter-protests
https://doi.org/10.1109/MASS.2017.15
https://www.nytimes.com/2020/01/19/style/ring-video-doorbell-home-security.html
https://www.nytimes.com/2020/01/19/style/ring-video-doorbell-home-security.html
https://regmedia.co.uk/2020/01/08/ringsenateresponse.pdf
https://regmedia.co.uk/2020/01/08/ringsenateresponse.pdf
https://gizmodo.com/amazons-ring-security-cameras-may-have-let-employees-sp-1831658669
https://gizmodo.com/amazons-ring-security-cameras-may-have-let-employees-sp-1831658669
https://doi.org/10.5555/3451271.3451279
https://mashable.com/article/ring-halloween-surveillance/
https://mashable.com/article/ring-halloween-surveillance/
https://arstechnica.com/tech-policy/2016/05/feds-say-suspect-should-rot-in-prison-for-refusing-to-decrypt-drives/
https://arstechnica.com/tech-policy/2016/05/feds-say-suspect-should-rot-in-prison-for-refusing-to-decrypt-drives/
https://arstechnica.com/tech-policy/2016/05/feds-say-suspect-should-rot-in-prison-for-refusing-to-decrypt-drives/
https://www.theverge.com/2019/12/3/20993814/ring-user-location-heat-map-police-privacy-tool-camera-owners
https://www.theverge.com/2019/12/3/20993814/ring-user-location-heat-map-police-privacy-tool-camera-owners
https://www.theverge.com/2019/12/3/20993814/ring-user-location-heat-map-police-privacy-tool-camera-owners
https://doi.org/10.1109/SP.2005.19
https://www.cnet.com/home/smart-home/amazons-ring-wanted-to-use-911-calls-to-activate-its-video-doorbells/
https://www.cnet.com/home/smart-home/amazons-ring-wanted-to-use-911-calls-to-activate-its-video-doorbells/
https://www.cnet.com/home/smart-home/amazons-ring-wanted-to-use-911-calls-to-activate-its-video-doorbells/
https://www.cnet.com/news/ring-gave-police-a-street-level-view-of-where-video-doorbells-were-for-over-a-year/
https://www.cnet.com/news/ring-gave-police-a-street-level-view-of-where-video-doorbells-were-for-over-a-year/
https://www.cnet.com/news/ring-gave-police-a-street-level-view-of-where-video-doorbells-were-for-over-a-year/

Building a Privacy-Preserving Smart Camera System 16

[36] J. Nielsen. Why You Only Need to Test with 5 Users. URL:
https://www.nngroup.com/articles/why-you-only-need-to-
test-with-5-users/. Last Accessed: 2021-08-30.

[37] J. Nielsen and T. K. Landauer. A mathematical
model of the finding of usability problems (1993).
10.1145/169059.169166.

[38] H. of Commons of Canada. Bill C-11 (First Reading)
(2020).

[39] E. Parliament and C. of the European Union. ePrivacy
Directive - Directive 2009/136/EC (2009).

[40] E. Parliament and C. of the European Union. Regulation
(EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 on the protection of natural per-
sons with regard to the processing of personal data and on
the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation) (Text with
EEA relevance) (2016).

[41] K. Paul. Amazon’s doorbell camera Ring is working with po-
lice – and controlling what they say. The Guardian, (2019).
URL: https://www.theguardian.com/technology/2019/aug/
29/ring-amazon-police-partnership-social-media-neighbor.
Last Accessed: 2020-01-13.

[42] T. C. Project. Guidelines for public video surveillance - A
guide to protecting communities and preserving civil liber-
ties (2007). URL: https://archive.constitutionproject.org/
pdf/Video_Surveillance_Guidelines_Report_w_Model_
Legislation4.pdf. Last Accessed: 2021-04-19.

[43] Ring. Ring Video Doorbells Get 15+ Million Dings This
Halloween and Capture Cute Costumes and Fun Pranks.
The Ring Blog, (2019). URL: https://blog.ring.com/
neighborhood-stories/ring-video-doorbells-get-15-million-
dings-this-halloween-and-capture-cute-costumes-and-fun-
pranks/. Last Accessed: 2021-05-18.

[44] Ring. Active Agency Map (2021). URL:
https://www.google.com/maps/d/viewer?mid=
1eYVDPh5itXq5acDT9b0BVeQwmESBa4cB. Last Accessed:
2021-05-18.

[45] R. L. Rivest, A. Shamir, and L. M. Adleman. Cryptographic
communications system and method (1983). URL: https://
patents.google.com/patent/US4405829/en. Last Accessed:
2021-08-18.

[46] L. Ropek. A Home Security Worker Hacked Into Surveillance
Systems to Watch People Have Sex. Gizmodo, (2021). URL:
https://gizmodo.com/a-home-security-worker-hacked-into-
surveillance-systems-1846111569. Last Accessed: 2021-01-
23.

[47] H. Salah, S. Zimmermann, and J. A. Cabrera G. Chapter 5 -
Content distribution (2020). https://doi.org/10.1016/B978-
0-12-820488-7.00016-5.

[48] G. Scorletti. Traitement du Signal (2016). URL: https:
//cel.archives-ouvertes.fr/cel-00673929. Last Accessed:
2021-05-11 (Lecture material in French).

[49] S. Ullah, B. Rinner, and L. Marcenaro. Smart cameras
with onboard signcryption for securing IoT applications.
In: 2017 Global Internet of Things Summit (GIoTS), pages
1–6 (2017). 10.1109/GIOTS.2017.8016279.

[50] T. Winkler and B. Rinner. TrustCAM: Security and Privacy-
Protection for an Embedded Smart Camera Based on
Trusted Computing. In: 2010 7th IEEE International Con-

ference on Advanced Video and Signal Based Surveillance,
pages 593–600 (2010). 10.1109/AVSS.2010.38.

[51] T. Winkler and B. Rinner. Secure embedded visual sensing
in end-user applications with TrustEYE.M4. In: 2015 IEEE
Tenth International Conference on Intelligent Sensors, Sen-
sor Networks and Information Processing (ISSNIP), pages
1–6 (2015). 10.1109/ISSNIP.2015.7106934.

[52] R. Wyden, C. Van Hollen, E. Markey, C. Coons, and G. Pe-
ters. Wyden, Markey, Van Hollen, Coons, Peters Question
Ring’s Data Security Practices (2019). URL: https://www.
wyden.senate.gov/news/press-releases/wyden-markey-van-
hollen-coons-peters-question-rings-data-security-practices.
Last Accessed: 2021-04-06.

[53] Wyze. Wyze Cam - Our Story (2018). URL: https://wyze.
com/our-story. Last Accessed: 2021-04-06.

[54] H. Yu, J. Lim, K. Kim, and S.-B. Lee. Pinto: Enabling
Video Privacy for Commodity IoT Cameras. In: Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 1089–1101 (2018).
10.1145/3243734.3243830.

https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://doi.org/10.1145/169059.169166
https://www.theguardian.com/technology/2019/aug/29/ring-amazon-police-partnership-social-media-neighbor
https://www.theguardian.com/technology/2019/aug/29/ring-amazon-police-partnership-social-media-neighbor
https://archive.constitutionproject.org/pdf/Video_Surveillance_Guidelines_Report_w_Model_Legislation4.pdf
https://archive.constitutionproject.org/pdf/Video_Surveillance_Guidelines_Report_w_Model_Legislation4.pdf
https://archive.constitutionproject.org/pdf/Video_Surveillance_Guidelines_Report_w_Model_Legislation4.pdf
https://blog.ring.com/neighborhood-stories/ring-video-doorbells-get-15-million-dings-this-halloween-and-capture-cute-costumes-and-fun-pranks/
https://blog.ring.com/neighborhood-stories/ring-video-doorbells-get-15-million-dings-this-halloween-and-capture-cute-costumes-and-fun-pranks/
https://blog.ring.com/neighborhood-stories/ring-video-doorbells-get-15-million-dings-this-halloween-and-capture-cute-costumes-and-fun-pranks/
https://blog.ring.com/neighborhood-stories/ring-video-doorbells-get-15-million-dings-this-halloween-and-capture-cute-costumes-and-fun-pranks/
https://www.google.com/maps/d/viewer?mid=1eYVDPh5itXq5acDT9b0BVeQwmESBa4cB
https://www.google.com/maps/d/viewer?mid=1eYVDPh5itXq5acDT9b0BVeQwmESBa4cB
https://patents.google.com/patent/US4405829/en
https://patents.google.com/patent/US4405829/en
https://gizmodo.com/a-home-security-worker-hacked-into-surveillance-systems-1846111569
https://gizmodo.com/a-home-security-worker-hacked-into-surveillance-systems-1846111569
https://doi.org/https://doi.org/10.1016/B978-0-12-820488-7.00016-5
https://doi.org/https://doi.org/10.1016/B978-0-12-820488-7.00016-5
https://cel.archives-ouvertes.fr/cel-00673929
https://cel.archives-ouvertes.fr/cel-00673929
https://doi.org/10.1109/GIOTS.2017.8016279
https://doi.org/10.1109/AVSS.2010.38
https://doi.org/10.1109/ISSNIP.2015.7106934
https://www.wyden.senate.gov/news/press-releases/wyden-markey-van-hollen-coons-peters-question-rings-data-security-practices
https://www.wyden.senate.gov/news/press-releases/wyden-markey-van-hollen-coons-peters-question-rings-data-security-practices
https://www.wyden.senate.gov/news/press-releases/wyden-markey-van-hollen-coons-peters-question-rings-data-security-practices
https://wyze.com/our-story
https://wyze.com/our-story
https://doi.org/10.1145/3243734.3243830

Building a Privacy-Preserving Smart Camera System 17

A Notation

Symbol Name
|| Concatenate function
⊕ XOR function
AES256Dec Symmetrical decryption function
AES256Enc Symmetrical encryption function
Ci ith cipher frame

check

Function to check that correspond-
ing party knows the secret key
linked to the public key.

dK Depth key tree
δK Epoch size

escrow material Escrow material encrypted with a
passphrase

Extract Key extraction function from K
Fi ith frame
gen Generate function
hi ith hash

hP Kd

Hash of the public key of a delega-
tee

hP Kf

Hash of the factory-generated pub-
lic key of the camera

hP Ko Hash of the public key of the owner
hash Hash function
HKDF Hash-based key derivation function

HMAC
Hash-based message authentica-
tion code function

init Initialization function
IVi ith initialization vector
K Binary key tree
ki Symmetric encryption key for Fi

passphrase Passphrase encrypting the escrow
material

RandBytes Random bytes generation function

RSA
Rivest–Shamir–Adleman encryp-
tion and signature scheme

secrets Secrets sent by the owner to the
camera during the initialization

seed key Encryption material owned by the
root node of K

σ
Asymmetrical signature of a block
of frames

Sign Asymmetrical signature function
(SKc, PKc) Asymmetric key pair of the camera
(SKd, PKd) Asymmetric key pair of a delegatee

(SKf , PKf)
Factory-generated asymmetric key
pair of the camera

(SKo, PKo) Asymmetric key pair of the owner
ti Timestamp of ith frame
[tj , tj+1) Time interval of the jth epoch
V erify Signature verification function

wifi credentials Wifi credentials of the owner’s net-
work

Table 5. Notation used by CaCTUs cryptographic constructions.

B Experimental Setup
Camera Device. On a Raspberry Pi 4 Model B Rev 1.1
(Broadcom BCM2711, 1.5 GHz quad-core Cortex-A72
ARM v7 64-bit, 2GB RAM), we used the Video4Linux2
driver [15] to interface with the camera sensor and cap-
ture frames that are then encrypted using OpenSSL3.04.
The Raspberry Pi Camera Module v2 that we used has
a still resolution of 8 Megapixels, a sensor resolution
of 3280 × 2464 pixels, and supports the three following
video modes 1080 p/30 fps, 720 p/60 fps, and 480 p/90 fps
(respectively video quality and maximum frame rate).
Android Smartphone. We used a Nokia 4.2 smart-
phone with Android 10 on which we have installed the
implemented application. In this application, we use C
native libraries that we have cross-compiled, and C code
to download and decrypt the frames. We leveraged the
MediaCodec class5 to perform the encoding and decod-
ing of video files, as well as the Quirc6 and Bluetooth
libraries to perform the pairing.
Cloud Storage. An AWS EC2 t3.small instance was
used to deploy a Nginx web server. Upon request, we
serve the list of encrypted frames that were recorded
during the time frame specified in the request.

C Signing Every Frame
We can individually sign each transmitted frame with
an adaptation of the one-time signatures (also known
as hashed signatures) process described by Gennaro
and Rohatgi [18]. This approach is more suitable for
live streaming, as the receiving device does not need
to verify the entire block of N frames before playing a
frame. The idea is to incorporate a one-time public key
into each frame payload, which is then used to sign the
next frame. During initialization, only the first frame is
signed asymmetrically, and subsequent frames are faster
to sign and verify. Note, however, that there is a trade-
off to this approach, as generation of the one-time keys
still incurs a computational cost (though this could be
reduced by pre-generating keys). We concretely describe
this technique, which is implemented using a hash-based
key tree:

4 https://www.openssl.org/
5 https://developer.android.com/reference/android/media/
MediaCodec
6 https://github.com/dlbeer/quirc

https://www.openssl.org/
https://developer.android.com/reference/android/media/MediaCodec
https://developer.android.com/reference/android/media/MediaCodec
https://github.com/dlbeer/quirc

Building a Privacy-Preserving Smart Camera System 18

1. Each frame Fi is recorded at timestamp ti.
2. The corresponding symmetric key ki is extracted

from the key rotation scheme K, an initialization
vector IVi is randomly generated, and a pair of one-
time keys (PKi+1, SKi+1) is derived.

ki = Extract(K, i)

IVi = RandBytes(16)

(PKi+1, SKi+1) = OneT imePair()

3. Each frame is then symmetrically encrypted
(confidentiality) into the corresponding cipher Ci

using the AES algorithm with a 256-bit key in Ga-
lois/Counter Mode (GCM) mode. Ci is then con-
catenated with IVi, ti, and PKi+1 to be hashed into
hi (integrity and freshness).

Ci = AES256Enc(IVi, ki, Fi)

hi = HMAC(ki, Ci||IVi||ti||PKi+1)

4. A signature σi is then computed (authenticity
and integrity). For the first signature σ1, we use
the private key SKc of the camera, while for the
other frames we use the one-time keys.

σi =

{
Sign(SKc, h1) if i = 1
Sign(SKi, hi) otherwise

5. The encrypted and authenticated frames
〈Ci, IVi, ti, σi, PKi+1〉 are uploaded to the cloud.

Each user who has access to the correct decryption keys
can download these encrypted and authenticated frames
〈Ci, IVi, ti, σi, PKi+1〉. The user can verify the integrity,
authenticity, and freshness of the data, then decrypt the
frames, and rebuild the video.
1. Each cipher Ci, encrypted using the initialization

vector IVi, with timestamp ti, one-time public key
PKi+1, and signature σi is downloaded on demand.

2. The corresponding symmetric key material kti is ex-
tracted from the key rotation scheme K. The hash
hi of each cipher Ci is computed.

ki = Extract(K, i)

hi = HMAC(ki, Ci||IVi||ti||PKi+1)

3. The signature σi is verified with the public key PKc

of the camera if this is the first frame or with the
one-time public key PKi (authenticity, integrity,
and freshness).

1 ?=

{
V erify(PKc, σ1, h1) if i = 1
V erify(PKi, σi, hi) otherwise

4. If the signature is correct, each cipher Ci is then
symmetrically decrypted into the corresponding
frame Fi to rebuild the video (confidentiality).

Fi = AES256Dec(IVi, ki, Ci)

D Protocol Details

D.1 Delegation

Owner 2 , Delegatee

1 hP Ko−→

2 P Ko−→
h′

o = hash(PKo)
h′

o

?= hP Ko

3 h′
d = hash(PKd) P Kd←− gen(SKd, PKd)

4 h′
d

?= hP Kd

hP Kd←−

5 DH(SKo, PKd) verif←→ DH(SKd, PKo)

6 keys {ki}
{ki}
−→

(RSA)
K = init({ki})

Table 6. Protocol followed by the smartphone application of the
owner and the delegatee during delegation, 2 and , respectively
correspond to what is obtained through the visual and Bluetooth
channels.

Table 6 shows the details of the operations per-
formed during the delegation protocol between the
owner and a delegatee. The process is very similar to
the one done during initialization with the camera:
1. The pair of asymmetric keys (SKo, PKo) is present

on the smartphone of the owner, when the delega-
tion process starts the smartphone application of
the owner displays a QR code in which the hash of
the owner’s public key hP Ko

is embedded. The del-
egatee’s smartphone scans this QR code and stores
its content.

2. The delegatee and the owner’s smartphone connect
through Bluetooth and the owner sends its public
key PKo to the delegatee, who computes the hash of
the owner’s public key h′

o and checks that it matches
the hash retrieved from the QR code.

3. If they match, the delegatee’s smartphone gener-
ates its own asymmetric pair of keys (SKd, PKd)

Building a Privacy-Preserving Smart Camera System 19

and sends its public key PKd through Bluetooth,
the owner computes the hash h′

d of the delegatee’s
public key.

4. The delegatee points their smartphone’s screen at
the owner. On the screen is displayed the QR code
with the hash of the delegatee’s public key. The
owner retrieves the content from the QR code and
checks that it matches h′

d.
5. If the key hashes match, both devices now verify

that the other device knows the secret key corre-
sponding to the public key that they advertised ear-
lier. This is can be done for instance by applying
the Diffie-Hellman key exchange to compute their
shared secret and then by exchanging a series of
encrypted messages where both parties prove their
knowledge.

6. Then, the owner extracts the keys {ki} and share
them in an encrypted and authenticated way using
RSA with the delegatee to give them access to the
corresponding videos. Note that this last step does
not necessary need to be done through Bluetooth
and could be done over the Internet too without
undermining the security of the delegation protocol.

D.2 Deletion and Factory Reset

Owner , or ~ Camera

1
request

key material−→
(RSA)

Verify request?

Perform operation

Table 7. Protocol followed by the owner and the camera during
deletion. , and ~ correspond to what is obtained through Blue-
tooth or over another channel such as the Internet.

When the owner decides to delete some videos, they
delete the corresponding decryption keys in the key tree
K they have access to. They also need to update accord-
ingly the key material inside the escrow material saved
on the camera. Similarly to the last step of the delega-
tion protocol, updating the key material on the camera
can be done through Bluetooth or remotely over the
Internet. Table 7 shows the details of this part of the
protocol:
1. The owner just sends the timestamped and authen-

ticated request as well as the updated key material
encrypted and authenticated with RSA (recall that
the owner and the camera have shared their asym-

metric public keys during initialization). At recep-
tion, the camera verifies the authenticity of the up-
date order and performs the operation if it is valid.

Likewise, to factory reset the camera, the owner sends
the request to the camera (through Bluetooth or re-
motely over the Internet), timestamped and authenti-
cated with the secret key SKo of the owner to verify the
legitimacy of the request. Then, both the camera and
owner’s smartphone delete the key tree K they have ac-
cess to, returning both devices to an uninitialized state.

D.3 Access Recovery

New smartphone , Camera

1 request−→

2 Passphrase known?
escrow←−

material

3 (SKo, PKo), PKc,
and K retrieved

Table 8. Protocol followed by the camera and the smartphone
application of the user trying to recover access. , correspond to
what is obtained through the Bluetooth channel.

Table 8 shows the steps executed when someone
tries to recover access to the system:
1. The owner uses their new smartphone to open a

Bluetooth connection to the camera and request the
escrow material.

2. The camera sends back the escrow material. Recall
that this escrow material is encrypted with the re-
covery passphrase that was displayed to the owner
during initialization.

3. If the owner knows the recovery passphrase, they
are able to recover access to the asymmetric key pair
(SKo, PKo) of the owner, to the public key PKc of
the camera, and to the key material necessary to
build the key tree K.

E Functional User Evaluation
Protocol

All institutional requirements were met for this func-
tional user evaluation of CaCTUs. We obtained approval
from the Institutional Review Board (IRB) of our uni-

Building a Privacy-Preserving Smart Camera System 20

versity and a consent form was signed by the partici-
pants at the beginning of their session. We also tested
the protocol with coworkers and collaborators before-
hand to identify possible limitations.

All the material was provided to the participants
that were guided by a researcher through the different
tasks to perform. We introduced each task with a real-
life scenario to help the participants behave as if they
were using the system in their real life. To collect feed-
back, we observed a talk aloud process asking the partic-
ipants to express aloud what they are doing or looking
for while performing the task, allowing us to better iden-
tify potential issues in the system. Between each task,
we also asked specific questions about the process that
had just been completed.

E.1 Before Each Session

Before each session, we verified that all the material
needed for the session was provided, was working as
expected, and was in its initial state:
1. Camera Device: 1 Raspberry Pi 4 Model B 2GB,

1 camera sensor, 1 case, 1 power supply, 1 micro SD
card with OS image flashed on it and our software
installed.

2. Android Smartphone Devices: 3 Nokia 4.2 with
our application pre-installed, wifi connection con-
figured, location enabled (to enable discovery of
nearby Bluetooth devices), Bluetooth disabled with
no prior device paired, and with no saved media on
the smartphone.

3. Other: Piece of paper and pen provided (to write
down the recovery passphrase).

E.2 During Each Session

As participants are being recorded using the system and
are recording their own video, we first asked participants
for explicit consent to be recorded. We then proceeded
by asking some preliminary questions about their back-
ground and their experience with smart camera systems
to get the discussion started.

Next, we explained that the objective of the session
was to evaluate the functional usability of the smart
camera system that we designed. Details about privacy
violations in current available systems were briefly de-
scribed to help the participants understand the moti-
vation of the project. Then, we presented how the sys-
tem we implemented was giving back full control to the

users and enforcing their privacy. These explanations
were very high level, since our goal was to make sure
that the participants understood that the video frames
were encrypted before leaving the camera device and
being uploaded to cloud storage, that they were then
decrypted on the smartphone side, and that the encryp-
tion and decryption keys were only known by the devices
that the user would allow to share access with.

After describing how the rest of the session was go-
ing to take place, each task was introduced by a scenario
and feedback obtained through the talk aloud process as
well as follow up questions. We verified that the partic-
ipants were either familiar with Android or we showed
them how to navigate between applications on Android.

Finally, we asked each participant to perform the
different tasks in the following order.

E.2.1 Initialization

Scenario: You want to secure your home, so you just
bought this new smart camera system online. You re-
ceived the package with the camera and just down-
loaded the application on your smartphone. Go ahead
with the rest of the configuration.
Questions:
– What did you like about the initialization?
– What did you dislike about the initialization?
– Any further comments?

E.2.2 System Usage

Scenario: You have your new smart camera all set up,
so now you want to be able to see what is happening
inside/outside of your home. For that you open the ap-
plication to view the live streaming and access the dif-
ferent functionalities of the application.
Questions:
1. How do you feel about the quality of the video

streaming?
2. What is your opinion about the following state-

ments (Likert scale: strongly disagree, disagree, neu-
tral, agree, strongly agree)?
(a) I am happy with the image quality of the

streaming.
(b) I am happy with the latency of the streaming.
(c) I am happy with the frame rate of the stream-

ing.
3. What did you like about the usage of the sys-

tem/application?

Building a Privacy-Preserving Smart Camera System 21

4. What did you dislike about the usage of the sys-
tem/application?

5. Any further comments?

E.2.3 Delegation

Scenario: You want to give access to someone else to
the live streaming of your camera, as you are going on
vacation abroad. They have downloaded the application
on their phone, you need to add them as a new delegatee
on your application.
Questions:
1. What did you like about the delegation process?
2. What did you dislike about the delegation process?
3. What is your opinion about the following state-

ment: It is easy to add a new delegatee (Likert scale:
strongly disagree, disagree, neutral, agree, strongly
agree)?

4. Would you like to see any change in the delegation
process or the options for the access control?

5. Who would you typically add as a delegatee and for
how long?

6. What do you think of the granularity of the delega-
tion control?

7. Any further comments?

E.2.4 Access Recovery

Scenario: Unfortunately, on your way back home dur-
ing the layover, you lost your smartphone, which was
the device you used to access your camera system, and
when you come back home, you figured out that some-
one has broken in during your holidays and robbed you.
You buy a new smartphone, install back the application
on it, and want to recover access to your system to see
what happened. Luckily, you wrote down your recovery
passphrase.
Questions:
1. What did you like about the recovery process?
2. What did you dislike about the recovery process?
3. What is your opinion about the following statement:

It is important for me to have a recovery process.
(Likert scale: strongly disagree, disagree, neutral,
agree, strongly agree)?

4. Any further comments?

E.2.5 Factory Reset

Scenario: Finally, you want to reconfigure your system
as you lost your smartphone, but before you want to
make sure to factory reset the system.
Questions:
1. What did you like about the factory reset process?
2. What did you dislike about the factory reset pro-

cess?
3. What is your opinion about the following statement:

It is important for me to have a factory reset pro-
cess. (Likert scale: strongly disagree, disagree, neu-
tral, agree, strongly agree)?

4. Any further comments?

E.3 After Each Session

After each session, we made sure that every device was
reset and back into its initial state, as if the session had
not occurred.

F Storyboard
Following is the storyboard of the CaCTUs’s smartphone
application.

Building a Privacy-Preserving Smart Camera System 22

Fig. 7. Screenshots of the CaCTUs smartphone application of the
owner during initialization of the system.

Fig. 8. Screenshots of the CaCTUs smartphone application: home
page (live feed), access to past footage, and settings.

Fig. 9. Screenshots of the CaCTUs smartphone application of the
owner during access recovery.

Building a Privacy-Preserving Smart Camera System 23

Fig. 10. Screenshots of the CaCTUs smartphone application of the
owner during delegation.

Fig. 11. Screenshots of the CaCTUs smartphone application of the
delegatee during delegation.

	Building a Privacy-Preserving Smart Camera System
	1 Introduction
	2 Background
	2.1 Smart Camera Systems
	2.2 Privacy in Smart Camera Systems
	2.3 Threat Model

	3 CaCTUs
	3.1 Overview
	3.2 Initialization
	3.3 Recording and Streaming Videos
	3.4 Delegation
	3.5 Deleting Videos and Factory Reset
	3.6 Access Recovery

	4 Evaluation
	4.1 Privacy and Security Analysis (RQ1)
	4.2 Functional User Evaluation (RQ2)
	4.3 Performance Evaluation (RQ3)

	5 Discussion
	5.1 Improving Latency
	5.2 Deploying CaCTUS as a Commercial System
	5.3 Extending to Other Devices

	6 Related Work
	7 Conclusion
	8 Acknowledgment
	A Notation
	B Experimental Setup
	C Signing Every Frame
	D Protocol Details
	D.1 Delegation
	D.2 Deletion and Factory Reset
	D.3 Access Recovery

	E Functional User Evaluation Protocol
	E.1 Before Each Session
	E.2 During Each Session
	E.2.1 Initialization
	E.2.2 System Usage
	E.2.3 Delegation
	E.2.4 Access Recovery
	E.2.5 Factory Reset

	E.3 After Each Session

	F Storyboard

