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Abstract— Public clouds provide scalable and cost-efficient
computing through resource sharing. However, moving from
traditional on-premises service management to clouds introduces
new challenges; failure to correctly provision, maintain, or
decommission elastic services can lead to functional failure and
vulnerability to attack. In this paper, we explore a broad class
of attacks on clouds which we refer to as cloud squatting. In a
cloud squatting attack, an adversary allocates resources in the
cloud (e.g., IP addresses) and thereafter leverages latent configu-
ration to exploit prior tenants. To measure and categorize cloud
squatting we deployed a custom Internet telescope within the
Amazon Web Services us-east-1 region. Using this apparatus,
we deployed over 3 million servers receiving 1.5 million unique
IP addresses (≈ 56% of the available pool) over 101 days
beginning in March of 2021. We identified 4 classes of cloud
services, 7 classes of third-party services, and DNS as sources of
exploitable latent configurations. We discovered that exploitable
configurations were both common and in many cases extremely
dangerous; we received over 5 million cloud messages, many
containing sensitive data such as financial transactions, GPS
location, and PII. Within the 7 classes of third-party services,
we identified dozens of exploitable software systems spanning
hundreds of servers (e.g., databases, caches, mobile applications,
and web services). Lastly, we identified 5446 exploitable domains
spanning 231 eTLDs—including 105 in the top 10 000 and 23
in the top 1000 popular domains. Through tenant disclosures
we have identified several root causes, including (a) a lack of
organizational controls, (b) poor service hygiene, and (c) failure
to follow best practices. We conclude with a discussion of the
space of possible mitigations and describe the mitigations to be
deployed by Amazon in response to this study.

I. INTRODUCTION

Public clouds such as Amazon Web Services [1], Google
Cloud [2], and Microsoft Azure [3] offer a myriad of benefits
to tenants; by providing a virtual private data center on top
of shared infrastructure, clouds allow users to scale services
with changing demand, recover from faults, and fluidly and
autonomously provision services. As such, public clouds are
now used by almost every major computing enterprise. At the
same time, the sharing of resources of clouds offers unique
architectural and security challenges. A hard-learned truism

is that care must be taken during provisioning, use, and
decommissioning of cloud servers.

Clouds providing elastic computing assign IP addresses (or
IPs) from a shared pool. An IP address can be used by a
deployed server instance and referenced by managed cloud
services (e.g., server-to-server messaging), third-party applica-
tions deployed by the tenant (e.g., using the deployed server
as a database or computer resource), or directly configured
in Domain Name System (DNS) records. Importantly, when
the service is decommissioned, the IP is released and may be
reallocated to other tenants [4]. This decommissioning process
and shared IP architecture causes a vulnerability: configura-
tions (e.g., dangling DNS [5]) that are not updated in tandem
with the decommissioning process will continue to refer to the
(now obsolete) IP. We refer to these configurations as latent
configurations. If an adversary subsequently acquires the IP
(Figure 1), they can exploit the latent configuration by receiv-
ing traffic intended for the previous service or masquerading as
the prior tenant. While previous studies have measured the risk
of latent configuration and IP use-after-free through DNS, the
community currently lacks understanding of how other types
of configuration could lead to vulnerabilities. In this work,
we investigate vulnerabilities caused by latent configuration
broadly, namely cloud service configuration and third-party
service configuration, in addition to dangling DNS. We name
the resulting superset class of attacks cloud squatting. A cloud
squatting attack occurs when an adversary acquires some
reused cloud resource (e.g., an IP address) that is referenced
by latent configuration (e.g., cloud service configuration).

We hypothesize that, not only does latent configuration span
beyond DNS, but that these previously unexplored vulnerabil-
ities are widespread and readily discoverable. We characterize
three classes of latent configuration in clouds: (1) configuration
in managed cloud services, (2) configuration in software
deployed by tenants, and (3) configuration through DNS. Each
of these classes (shown in Table I) presents distinct challenges
and opportunities for study as we evaluate legitimacy (i.e.,
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actual traffic intended for a previous tenant) and exploitability
(i.e., ability of an adversary to receive sensitive data).

To measure the presence of latent configuration in clouds,
we developed and deployed an Internet telescope in the Ama-
zon Web Services us-east-1 region1. Using this telescope,
we provisioned over 3 million cloud servers with 1.5 million
unique IPs (≈ 56% of the region IP address pool). We
passively collected all inbound traffic (containing 596M TCP
sessions) over 101 days starting on March 8, 2021. The scale
of this experiment and the size of the cloud studied ensure a
representative view of traffic in a commercial public cloud.

The experiment overwhelmingly confirmed our hypothesis
and demonstrated a surprising prevalence of latent configura-
tion. We received over 5 million messages directed to prior
tenants on over 27 thousand IPs that we were assigned from
cloud-managed services (e.g., SNS messaging). These mes-
sages contained sensitive data including financial transaction
metadata, customer GPS location history, and customer PII
(e.g., driver’s license data and personal addresses). Third-
party services likewise exposed sensitive data, with hundreds
of instances across 7 classes of services found vulnerable.
With respect to latent DNS configurations, we identified 5446
(second level, e.g., example.com) domains spanning 231
eTLDs (e.g., .com)—including 105 in the top 10 000 and 23
in the top 1000 list of popular domains. Moreover, the results
were observed across the entirety of cloud tenant populations:
in government, academic, and industrial (e.g., high-tech, finan-
cial, health care, and entertainment) organizations. Following
our initial disclosure, Amazon performed an internal review
of customer configurations which found latent configurations
in similar breadth and quantity in all of their regions.

Summarized in Table I, we identified traffic sourced from
4 kinds of cloud services, 7 classes of third-party services,
and DNS as sources of exploitable latent configurations.
Latent configurations of cloud services supporting messaging,
health checks, content delivery and generalized API controls
were observed. We also found that third-party services can
produce latent configurations as diverse as the applications
they support. Here, we found cases of latent configurations
in databases, distributed caches, logging, and many others.
Lastly, we found many cases of poorly managed DNS leading
to exploitable organizations.

We contacted Amazon AWS in June of 2021 and have
since worked with them to support coordinated disclosures and
develop mitigations. We are also working with US government
agencies and other cloud providers to support detection and
disclosure (see Appendix A). We conducted virtual meetings
with select tenants for disclosure and to discuss root causes.
Broadly, the root causes identified include, (a) a lack of
organizational control over cloud accounts, (b) poor service
hygiene (e.g., poor or uncontrolled management of service
configurations), and (c) failure of engineers/departments to
follow organizational policies and best practices, and (d) in-

1We selected the AWS us-east-1 region because of its size and diversity.
We expect similar results in any public cloud, as many root causes are
unrelated to AWS or its services.
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Fig. 1: Exploiting IP Reuse—Ê A client is configured to
connect to a tenant’s service. Ë After the service is retired,
an adversary provisions a server and is granted an IP address
previously assigned to the tenant. Ì The client connects to the
adversary-controlled server. Í The adversary receives traffic
intended for the tenant, infers the intended service from the
client traffic, and exploits it. Note that 203.0.113.15 is
reserved for example usage by IANA.

complete automation. Both our measurement study and tenant
disclosures were covered by an IRB exemption from our host
institution, and followed ethical considerations consistent with
contemporary works in network measurement.

Lastly, we have developed and evaluated a set of mitigations
to prevent latent configuration vulnerabilities and reduce an
adversary’s ability to acquire IPs associated with vulnerable
tenants. Existing best practices, such as cloud configuration
auditing tools, reserved IP blocks, and managed configuration
can prevent latent configuration when properly used by ten-
ants. However, even when tenants are unable to adopt new
best practices, changes to the IP allocation pool can prevent
adversaries from successfully carrying out a cloud squatting
attack. We introduce such a technique, which we name IP
Tagging, reducing adversaries’ access to tenant IPs by 99.94%
over the current cloud IP pool allocation strategy. In response
to our disclosures and their own internal review of customer’s
configurations, Amazon is updating best practices to advise
customers and providing additional guidance within the user
experience of certain services (Section VII-C).

II. BACKGROUND

We study the prevalence of security risks associated with
cloud-application configuration. It lies at the intersection of
three bodies of work: network telescopes, architecture of
public clouds, and configuration management. We provide
background on each, then discuss the problems surrounding IP
reuse in public clouds that motivate our measurement study.

A. Internet Telescopes

Internet telescopes are systems designed to observe network
events for large-scale analyses [18], [19], [20], [21]. Tele-
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TABLE I: Taxonomy of discovered cloud squatting vulnerabilities.

Vulnerability Class Description Characterization

Cloud Configuration
SNS [6] Topics send messages to IP addresses reallocated to another tenant. 24.9 k IPs received 1.6M messages

Route53 [7] Service health checks are sent to previously-controlled IP ad-
dresses. An adversary who responds correctly to these health
checks can receive live traffic.

2.8 k IPs received 3.6M messages

CloudFront [8] Web requests are automatically forwarded to raw IPs that a tenant
may no longer control.

65 IPs received 1.7 k messages

API Gateway [9] Web requests are forwarded to previously-configured backends that
a tenant no longer controls.

3 IPs received 10 messages

Third-Party Services
Databases Database traffic with sensitive information. Postgres [10], ElasticSearch [11], MySQL [12], etc.

Caches Cache traffic that could allow gaining control of caches. Redis [13] Cluster traffic
Financial Traffic containing credentials and potentially transaction data. Financial Information eXchange (FIX) [14]
Logging Crash reports/logs from smartphone apps. Tracebacks, emails, and device identifiers
Metrics Analytics on user actions from smartphone and web applications. PII and website actions

Webhooks Applications send events intended for another tenant. Teamwork [15], BitBucket [16], Segment [17], etc.
App Traffic Smartphone/web applications connecting to APIs via raw IPs. Private info received from apps

Domain Name Resolution DNS entries pointing to IP addresses that tenants no longer control. 5446 domains

scopes vary in design and purpose but serve to capture a rep-
resentative sample of events from a particular vantage point in
the network. The telescope can either interact with sources per
some identified protocol or be non-interactive (i.e., passively
collect observable traffic). The captured data (e.g., IP packets)
can then be used to inform network health monitoring and
intrusion detection systems, among other network services.

For our study, we design a large-scale telescope that pro-
vides visibility into cloud networks. We leverage publicly
available offerings to provision virtual servers and collect
inbound traffic for analysis. Notably, the telescope is designed
to be non-interactive above the transport layer (e.g., TCP).

B. Architecture of Public Clouds

Public cloud infrastructure drives a myriad of services
offered by large corporations—ranging from productivity
suites [22] to managed blockchains [23]. There are several
models by which (public) cloud service providers lease out
shared resources to tenants, including Software-as-a-Service
(SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-
Service (IaaS). Unlike SaaS and PaaS, where the tenant largely
delegates management of hardware and infrastructure to the
cloud service provider, IaaS customers directly manage their
virtualized storage, network, and compute resources. Here, we
focus our efforts on the most fundamental option offered under
an IaaS model: virtual private servers. Amazon Web Services
(AWS) offers virtual private servers primarily through their
Elastic Compute Cloud (EC2) platform [24].

Abstracting compute, network, and storage resources pro-
vides the illusion of a private cloud. Cloud tenants can use
APIs to create virtual servers, which can be assigned public
IP addresses and accept traffic from other services within the
cloud, or from the Internet at large. Regardless of which model
a tenant leases resources under, individual service endpoints
are typically uniquely identified via distinct IPs. The IPs are
provisioned to the tenant from the cloud provider’s pool of IPs,

and can be reused by others once the tenant releases them. As
different tenants continuously provision and release IPs from
the shared pool, the risk of inconsistencies in configuration
settings increases.

C. Configuration Management and Latent Configuration

Traditionally, enterprise compute, storage, and network re-
sources were kept on-premises and largely managed with a
collection of scripts and ad hoc practices. However, outsourc-
ing to a cloud-service provider introduces a radically new
interface through which tenants deploy and manage network
services. The usage model typically follows an allocate-run-
scale-deallocate pattern that defines the characteristic elastic
property of public clouds [25]. While favorable for the scal-
ability and reliability benefits, managing large-scale systems
on elastic cloud resources is an increasingly difficult task [26].
Specifically, tenants are responsible for correctly decommis-
sioning all related services, configuration settings, and other
dependencies during the decommissioning phase of operation.

Fundamental to our work is the concept of configuration
settings not removed during decommissioning, which we refer
to as latent configuration. Concretely, we focus our study on
IPs in the cloud that a tenant has released and no longer
controls, but failed to remove the (now latent) configuration
referring to it. It is latent because, while it initially does not
refer to a valid resource and is therefore harmless, another
(potentially adversarial) tenant could receive the IP address it
refers to, making the configuration active and potentially ex-
ploitable. Work studying the issue of latent configuration [27]
has generally shown it to be a difficult risk to mitigate, as
it initially causes silent failures, evading detection by system
administrators and security organizations.

D. IP Reuse and Dangling DNS

IP Reuse is an inherent property of public cloud architec-
tures. Liu et al. [5] performed an investigation of this issue in
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the context of the DNS, wherein dangling DNS records point-
ing to an IP address or other resource could allow an adversary
to take over domains by controlling the reused resource. The
authors additionally found dangling DNS records exploitable
beyond IP reuse when records point to other hosted platforms
(e.g., GitHub pages or Heroku). Others have demonstrated
additional generality, as nameserver (NS) records can allow
domain takeovers [28]. An adversary performs a squatting
attack by acquiring the referenced resource, whether that be
an IP address or other service identifier. Indeed, further large-
scale studies demonstrated that dangling DNS vulnerabilities
are prevalent and span beyond IP reuse [29].

In a related work, Borgole et al [4] further investigated
dangling DNS and IP reuse specifically. They found that APIs
for bulk provisioning of IPs often allow an adversary to acquire
a given IP address associated with a target domain. They
further studied the effect of existing and proposed security
techniques such as TLS towards preventing exploitation of
dangling DNS records. While a properly issued and used TLS
certificate guards against the effects of dangling DNS records,
the use of domain validation during certificate issuance (e.g.,
through LetsEncrypt [30]) allows an adversary to provision a
valid certificate using the dangling DNS record, defeating this
protection. They proceed by demonstrating defenses against
the domain-validation vulnerability through an enhanced do-
main ownership challenge.

These works all find vulnerable web properties through
scanning of DNS, and security teams within organizations
have responded by using domain scanning tools to detect
and mitigate such vulnerabilities. However, DNS is but one
means by which latent configuration can occur. We investigate
vulnerabilities caused by IP reuse directly, finding classes of
vulnerabilities that are independent of DNS and that cannot
be detected by subdomain scanning techniques.

III. CLOUD SQUATTING
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Fig. 2: The space of cloud squatting threats. New attacks
explored by our work are represented by a star.

In this work, we study latent configuration and resource
reuse in clouds generally. To date, this vulnerability has been
considered in the context of dangling DNS and IP use-after-
free. Common amongst these vulnerabilities and our consid-
ered space is that vulnerabilities are exploited via squatting

on the resource, a concept that has received ongoing attention
in the security community (e.g., combo squatting [31], typo
squatting [32], file squatting [33], and skill squatting [34],
among others). Motivated by the generality between these
topics, we name this superset attack space cloud squatting.
An adversary can perform a cloud squatting attack when latent
configuration refers to a cloud resource (e.g., an IP address)
that the adversary controls (see Figure 1). Though we focus
our study on configurations referring to IPs, it is conceivable
that myriad cloud configurations referring to resources other
than IPs could also exist and be exploitable (Figure 2). We
next discuss the general classes of latent configurations an
adversary might seek to exploit, as well as the steps they would
take to exploit it.

A. Classes of Latent Configuration

While latent configurations are as diverse as the applications
deployed on public clouds, we characterize them into three
classes: cloud services, third-party applications, and DNS.
Each represents unique properties and challenges for study.

Cloud Services. Cloud providers offer a selection of services
that can be used in tandem to ease development, deployment,
and management. Tenants typically opt to use these services
because of the level of automation they can achieve—for
fault tolerance, scalability, and more [35]. While each cloud
provider offers different options, commonly used services
include content distribution networks, pub/sub messaging sys-
tems, network monitoring, and API servers. AWS’s offer-
ings include the CloudFront [8] content distribution network,
the Simple Notification Service [6] (SNS) message queuing
service (similar to MQTT [36]), Route53 health checks [7]
that monitor server/service status, and API Gateway [9] that
provides a frontend for API requests to instances in the cloud.

Services are largely provisioned with an accompanying
IP address, which is used for communication. IP addresses
are assigned to new virtual servers from a shared IP
pool, and cloud tenants then set up service associations
between them (i.e., which service endpoints communicate
with each other). Under public cloud providers such as
AWS, when tenants launch virtual servers for public
web services, the servers can receive both public
IPs as well as public DNS hostnames formed using
deterministic IP address based naming (IPBN [37], e.g.,
ec2-203-0-113-15.compute-1.amazonaws.com).
As a result, references to these raw resource identifiers can be
stored as DNS records or directly in service configurations.
Failing to remove configurations pointing to raw resource
identifiers when decommissioning the servers then leads to
latent configuration.

For example, for SNS, tenants specify which endpoints
(per their fixed IP based hostname) should receive notification
messages for different SNS topics. The configurations between
the services, however, are not automatically removed when
the tenant releases the public IP address. If the configuration
persists after the tenant releases the IP, SNS will continue to
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send messages to the same IPs—even if the IP is subsequently
assigned to an instance now owned by an adversary.

Third-party applications. Just as cloud services use raw
resource identifiers, applications deployed by tenants often
can as well. For instance, a webserver may be configured to
connect to a database to store transaction information. When
this configuration references the database via an IP address
or IPBN, there is the potential for latent configuration to be
created. If an adversary subsequently creates a virtual server
and receives the IP address associated with the database, the
previous tenant’s webserver will continue to connect to the IP
and thus risk leaking sensitive data to the adversary.

This issue is exacerbated by the use of services that are
fault tolerant: an application that silently tolerates failures due
to latent configuration may also silently resume connecting to
the service when it is controlled by an adversary. Because these
services are developed or deployed by each tenant individually,
it is difficult to fully quantify the space of these vulnerabilities.
We therefore discuss classes of vulnerable third-party services
deployed by tenants in Section VI-B.

DNS. The ubiquity and transparency of DNS makes it an
especially compelling target for study, as demonstrated by
the prior works that have measured incidence of dangling
DNS. Clients use DNS to resolve human-readable names to
IP addresses. Most importantly, end users place trust in the
associations provided through DNS, giving sensitive infor-
mation to organizations based on DNS records. When cloud
tenants decommission servers and leave DNS configuration
referencing these servers, user- or machine-driven clients can
connect to these servers and trust them to be associated with
the original organization. As analyzed in Section VI-C, organi-
zations of all sizes leave DNS records referring to servers they
no longer control. Configuration errors in DNS have received
substantial consideration from the security community, with
takeovers of domains being demonstrated at various levels
of the resolution process [5], [28], [38], [4]. However, being
a publicly-accessible directory of configuration, DNS is a
promising target for our study, as discovered vulnerabilities
can be definitively traced back to specific organizations. DNS
can also be used as part of the other studied configuration
classes–for instance, a cloud service could resolve an IP
through DNS. Our results (Section VI) show that, while this
does occur in practice, much of the measured exploitable
traffic was configured independently of DNS.

B. Exploiting Latent Configuration

Upon detecting latent configuration, the adversary must take
steps to actually exploit any received traffic. In the case of
DNS, as well as some cloud service traffic (e.g., Route53,
Cloudfront), phishing attacks can be performed [5], including
creation of valid TLS certificates in some cases [4]. Other
cloud service traffic (e.g., SNS and API Gateway) can directly
send sensitive information to an adversary. Thus, an adversary
need only retain the IP address or other resource and continue
to (passively) receive sensitive data.

Under an untargeted attack, an adversary would first de-
termine the owner of the sensitive data, then either solicit a
ransom payment from that party or offer the data for sale
online. Indeed, our experiment found instances of private
information leakage similar to that involved in high-profile
user data leaks [39]. Other areas of study have similarly
established untargeted attacks as compelling for adversaries,
such as phishing [40], [41], ransomware [42], [43], and data
exfiltration [44], [45]. For service traffic, such as databases,
the adversary could serve incorrect data to the clients, or store
sensitive data that the client attempts to insert in the database.
In some cases a sophisticated adversary could infer the service
previously hosted on an IP, connect to the new IP address of
the service, and perform a man-in-the-middle attack.

IV. CLOUD TRAFFIC COLLECTION

We aim to demonstrate the existence, diversity, and preva-
lence of latent configuration vulnerabilities in a public cloud.
Here, we describe our collection approach, followed by ethical
and adversarial implications.

A. Measurement Approach

We aim to collect a representative sample of traffic inbound
to public cloud IP addresses, most importantly, by maximizing
the number of IP addresses observed. The approach is inspired
by extant works on Internet telescopes [46], [20], [47], but
differs in that it is deployed in IP space allocated to cloud
providers, rather than dark space (i.e., portions of the IP
address space not allocated for an active purpose). Collection
servers are automatically allocated (using IP addresses from
the AWS IP pool) until a quota is reached of simultaneous
servers (in our case, the quota set by AWS was 320 simultane-
ous servers). Each collection server accepts TCP connections
on all ports and records received traffic for up to 10 minutes.
After 10 minutes, the collection server uploads received traffic
in PCAP format to an encrypted log repository (i.e., Amazon
S3) and terminates. Terminated servers are automatically re-
placed by new collection servers to maintain the server quota.
In this way, new IPs are continually drawn from the pool and
information on connecting services is collected.

B. Limitations

Our approach to measurement of latent configuration takes
a different approach from prior works, which analyze public
configuration repositories such as DNS [4], [5]. While this
allows us to see vulnerable configurations that are not publicly
visible, it also carries new considerations and limitations: (1)
In some protocols (e.g., Postgres), the server is expected to
execute a specific protocol for the client to continue sending
data, so our passive telescope can only see limited data on
these protocols. (2) Our approach only sees vulnerabilities that
actively cause traffic to be sent during the 10-minute study
period (this also means observed latent configurations are more
likely to be in active use). In these ways, our measurement
approach complements those of prior works.
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TABLE II: IP allocation statistics, including per-region esti-
mates of the total available IPs and percentage of estimated
IPs that were measured in our study (Capture Rate). In
total we estimate that 56% of available IP addresses in the
us-east-1 region were measured.

Zone Servers Unique IPs Estimated IPs Capture Rate

us-east-1a 581 k 383 k 789 k 49%
us-east-1b 607 k 389 k 762 k 51%
us-east-1c 630 k 236 k 313 k 76%
us-east-1d 573 k 360 k 700 k 51%
us-east-1f 647 k 171 k 198 k 87%

Total 3039 k 1540 k 2762 k 56%

C. Ethics and Adversarial Implications

Throughout our study we took actions to ensure that ef-
fects of our measurement would be minimized. As in prior
works [4], [5], we capped our IP addresses allocation to an
acceptable rate (320 addresses every 10 minutes). Our data
collection was covered under an exemption from our institu-
tional review board (IRB). While the scope of data collected
in our study was similar to other network telescopes [20], [46],
[21], we also took additional steps (outlined in Appendix B)
to ensure that data was protected throughout the study. Dis-
closure of all discovered vulnerability was performed through
Amazon (Appendix A), including extended scanning by AWS
to provide expanded disclosure.

Unlike previous datasets that collect only transport-layer
traffic (e.g., UDP packets and TCP SYN packets) [48], our
approach yields raw packet captures with data from servers
that are legitimately routable, but otherwise have no content.
Because the approach does not rely on privileged access to the
cloud, it also presents a compelling technique for an adversary:
rather than passively collect traffic for study, an adversary
could deploy honeypots designed to target commonly-used
protocols. These honeypots could record personal information
for exploitation, provide fake authentication prompts to extract
credentials, or host drive-by downloads of malware. The
low cost with which our measurement study was performed
(2089.76USD over 101 days) suggests that an adversary could
carry out such an attack at minimal expense. This clear risk
to cloud infrastructure motivated our extensive disclosure and
remediation process (see Appendix A).

V. CHARACTERIZING CLOUD IP USE

We first use our collected data to analyze the AWS
us-east-1 IP pool. An adversary wishing to exploit latent
configuration would aim to measure as many IPs as possible,
and to ensure that those IPs have been used by other tenants
recently. This motivates two analysis questions: (A) how many
IPs are available for allocation by cloud tenants? (B) how
quickly are IPs available for reuse? These questions will also
inform our evaluation of countermeasures (Section VII).

A. IP Address Availability

To estimate the number of available IPs, we model the IP
address pool in each AWS availability zone as a population
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Fig. 3: Measuring time between IP reuse on AWS, over the
entire study and reuse seen within 6 hours. IPs were generally
not reused within 30 minutes after release.

survey. Population surveys are a statistical method generally
used to measure animal populations, but the same principles
can be applied in this case to estimate size and activity of
the IP address pool. We begin by assuming that IP allocations
are pseudo-randomly drawn from the pool of available IPs
(as has been subsequently confirmed in conversations with
Amazon). We model the pool as an open population, since
other tenants also allocate and return IPs during the course
of the study. All modeling was performed using an open
population estimation technique developed by Sandland and
Cormack [49], implemented in Rcapture [50]. We see that
larger availability zones yield largely unseen IPs throughout
the experiment whereas smaller ones are quickly covered. An
adversary seeking to maximize IP coverage might target zones
with fewer IPs, while one searching for a specific tenant’s IPs
would emphasize high capture rate.

Results of our population estimation are shown in Table II.
We estimate the number of IPs in the pool at any point during
the study, as well as the capture rate, which is the percentage
of estimated IPs that we measured. This can be interpreted as
a probability that any IP released into the pool was measured
by us during the study. We conclude that the current IP
pool implementation on AWS is favorable for achieving high
coverage of the IP space. Creating servers on AWS yields a
high number of IPs, each of which could have potential latent
configuration. Further, our capture ratio across each zone was
as high as 87%, meaning that an IP released by a tenant in
the pool had an 87% chance of being measured by our study.
These metrics show that an adversary can continually measure
the IP space and discover new, potentially exploitable systems,
and that even a single adversary performing such an attack
poses a high risk to cloud tenants in even the largest zones.

B. Age of IPs at Reuse

We additionally evaluate the age of IP addresses when they
are reused (i.e., how long it takes for an IP address to be
reallocated after a tenant releases it). Because we achieve such
high coverage of the us-east-1 IP space, many of the IPs
seen by our apparatus are seen twice or more (in one instance
in us-east-1f, we received the same IP address 13 times).
By recording the interval between release and reacquisition
of these IP addresses, we can characterize the IP address
allocation to understand what policies are being applied.
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TABLE III: Number of unique IPs receiving traffic from each
cloud service, number of TCP sessions in total and with DNS
info, and estimated unique tenants.

Service SNS Route53 Cloudfront API Gateway

IPs 24.9 k 2.8 k 65 3
Sessions 1.6M 3.6M 1.7 k 10

Sessions w/ DNS 25 567 k 767 2
Unique Tenants 78 3.1 k 64 3

Figure 3 shows the distribution of these intervals. At a macro
level (left side), we see that reuse time is consistent with
a Poisson process, implying that IP addresses are randomly
chosen from the pool without respect to when the IP was
most recently used. When looking at reuse seen within 6 hours
(right side), we find that IP addresses are not reused within
30 minutes of release, even by the same tenant (outliers are
caused by our use of EC2 spot instances and do not indicate
reuse before 30min). This demonstrates AWS is employing a
cooldown policy on their IP address pool, though as we see
in our analysis of exploitable configuration (Section VI) such
an aging policy is likely intended for other purposes and does
not prevent exploitable misconfiguration due to IP reuse.

VI. MEASURING EXPLOITABILITY

Referring back to Table I, we consider latent configuration
vulnerabilities in three stages. We first explore vulnerabilities
associated with cloud services. Next, we show that vulner-
abilities exist beyond managed services and span a variety
of protocols, applications, and verticals. Finally, we leverage
information obtained from public DNS to attribute found
vulnerabilities to specific organizations, finding that latent
configuration is ubiquitous across organizations of all sizes.

A. Exploitation Through Cloud Services

We first investigate vulnerabilities caused by latent config-
uration in managed cloud services. To do this, we filtered all
received traffic to sessions exclusively coming from the AWS
IP space that is reserved for managed services [51]. Requests
were then associated with each individual cloud service based
on HTTP user agent. Note that, because the studied IP space
is reserved for managed services, we can validate that filtered
traffic is legitimate service traffic and not an adversary posing
as a managed service.

In total we discovered traffic that was traceable to four dif-
ferent cloud services: (1) Simple Notification Service (SNS),
(2) Route53, (3) Cloudfront, and (4) API Gateway. While these
services varied in prevalence, each service either directly sent
sensitive data or had a clear path by which an adversary could
extract sensitive data. Coarse statistics on traffic received from
each service are presented in Table III.
SNS. AWS Simple Notification Service (SNS) [6] allows
tenants to publish and subscribe to messages (similar to
MQTT [36]) and is broadly used for internal communication
between cloud services. It is designed to be fault tolerant:
it will continue sending messages to subscribed IP addresses
even if the address is not available for an extended period

of time, enqueueing failed messages as necessary (e.g., due
to server decommissioning). Therefore, an adversary who re-
ceives the IP address may receive new messages and messages
enqueued from before they acquired the address.

We received messages from 78 SNS topics on 24.9 k
unique cloud IP addresses, with 1.6M total messages received.
Because SNS traffic is intended for internal communication
between services, some of the communications received from
these channels were highly sensitive. In one case, a SNS
endpoint was used by a financial services provider to trans-
mit information pertaining to client transactions. In another,
a social services organization was transmitting the names,
addresses, contact information, and location history of clients
via SNS. In both of these cases, latent configuration referenced
multiple previously-controlled IP addresses for a single topic,
amplifying the ability for an adversary to receive the traffic.

Route53. Route53 [7] is Amazon’s authoritative DNS service,
and it allows tenants to check the health of services (Route53
Health Checks) before routing traffic to them. The health
checks also provide fault tolerance: an unreachable service
will not be included in DNS responses, preventing traffic
from reaching that service. However, if a health check targets
an IP address now-owned by an adversary, they can begin
responding successfully to the health check and subsequently
receive traffic intended for the previous tenant.

Although this traffic did not directly contain sensitive data,
it is indicative of a cloud squatting vulnerability. Most health
checks were not associated with a domain name, however, in
some cases health checks were associated with domain names
that were also seen directly receiving end-user traffic. For
instance, one entertainment company had vulnerabilities under
multiple unique domain names and under Route53 health
checks. In total 2.8 k unique IP addresses received traffic
from Route53 health checks, with an estimated 3.1 k unique
properties (this implies that some IP addresses were associated
with multiple properties, potentially by the same tenant).

Cloudfront. Cloudfront [8] is a content delivery network
(CDN) that routes requests to cloud servers. When a tenant
fails to remove an IP address from Cloudfront configuration
when releasing the IP address, a cloud squatting vulnerability
can occur. In total we found 65 IP addresses received 1.7 k
requests from Cloudfront. Because Cloudfront distributions
are often placed in front of static content we predictably did
not observe sensitive data sent directly by these connections.
However, the use of CDNs in serving content such as scripts
makes them an enticing target for adversaries. In one case, a
Cloudfront distribution forwarded requests for a JavaScript file
to be run alongside a major website. An adversary responding
to this request could receive remote code execution capabilities
within the context of a trusted site.

API Gateway. API Gateway [9] also acts as a frontend to
route traffic to cloud services. We found that three unique
IP addresses received traffic attributable to API Gateway. In
one case, this traffic directly contained API authentication
information intended for a service hosted on AWS. While the
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limited set of connections from this service makes it difficult
to draw conclusions on trends, it is likely that cloud squatting
presents a credible concern for customers using API Gateway
with raw IP addresses.

Independence from DNS. We confirmed our hypothesis that
latent configuration might exist beyond just DNS: across the
4 cloud services measured, traffic existed on each that did not
contain DNS information. Because this traffic is sent from a
managed cloud service with standardized behavior, the lack
of DNS information in a request implies that DNS was not
used to configure the connection from the cloud service (i.e.,
the configuration directly referred to the IP address). As a
result, we conclude that the connections are caused by latent
configuration within the cloud service itself. In these cases,
as cloud provider configuration is not publicly visible, our
telescope-based approach identifies vulnerabilities not seen in
prior works.

Generality across providers. Our measurement study is
focused on the specific services provided by AWS. As other
cloud providers offer similar services, we hypothesize similar
effects on those providers as well. For instance, Microsoft
Azure offers Azure Event Grid [52], which is similar to SNS,
and Google Cloud Platform offers Cloud Pub/Sub [53]. In the
case of Azure, endpoints are validated at provisioning time,
but configuration is not validated on an ongoing basis. Cloud
Pub/Sub relies on TLS for endpoint authentication, so findings
regarding TLS apply here as well.

Our analysis demonstrates a trend of exploitable latent
configuration across managed cloud services. Whereas an
adversary wishing to exploit connections through a CDN or
health check must exert manual effort to perform a phishing
campaign, messages received from a service such as SNS
directly convey sensitive information, and an adversary could
obtain this traffic in a fully automated fashion, analyzing the
data after the fact to determine what information is of value.
Further, these cloud services collectively show a surprising
downside of fault tolerance: when services fail silently and re-
cover from errors automatically, they can inadvertently become
targets for abuse by adversaries when used in a shared compute
environment such as a public cloud. While our study identified
many vulnerable properties, the approach only allows us to
observe a (representative) fraction of total cloud traffic. In
response to observed vulnerabilities, Amazon is using control-
plane information to detect potential vulnerabilities across all
regions and tenants (Section VII-C).

B. Exploitation through Third-Party Services

We filter collected traffic to examine the prevalence of
latent configuration in third-party service traffic (i.e., traffic
not sent by managed cloud services). Our filter (see sidebar
and Appendix E) attempts to identify what is legitimate (i.e.,
attempting to interact with a previous tenant of the IP address)
and exploitable (i.e., allows for unintended information leak-
age from the client).

TABLE IV: Effect of the traffic filtering apparatus on remain-
ing traffic to be analyzed. Our goal in this section is to reduce
the dataset to be manually analyzed for exploitable traffic.

Step IPs TCP Sessions Size

Initial 3.13M 596M 410GB
Network 3.03M 280M 148GB
Transport 1.70M 10.2M 11GB
Session 1.14M 4.89M 9.3GB

Application 340 k 2.95M 6.3GB

After all filtering steps were applied, the remaining traf-
fic contained 340 k source IP addresses across 2.95M TCP
sessions. The first session from each source IP address was
analyzed manually to further reduce dataset size. While quan-
tifying the prevalence of other exploitable traffic is intractable,
we did find that exploitable traffic exists across a variety of
protocols and applications.

Databases. We received traffic intended for databases hosted
by customers on AWS. Connections were specifically identi-
fied across MySQL [12], Postgres [10], and ElasticSearch [11],
though other database protocols likely exist within the data
but were not manually identified. For example, one IP address
received repeated connection attempts to a Postgres database
apparently intended to hold payment information, including
plausible credentials. An adversary could employ a database
honeypot to harvest credentials for use in attacking other
services, or even directly receive sensitive user data contained
in database queries, though our experimental apparatus pur-
posefully does not elicit such traffic.

Caches. We identified two types of traffic intended for
Redis [13]: (1) client traffic sending queries to an instance and
(2) communication between Redis cache servers. While client
traffic may be attributable to scanners, inter-server traffic was
plausibly legitimate. This traffic implies that the IP address
was formerly part of a cluster of Redis cache servers serving
the same cache, and that a server listening at this address
could receive intra-cluster communication traffic, which would
contain data about the information stored in the cache. Again,
the passive nature of our data collection approach did not allow
sensitive information to be received in this case.

Financial Traffic. We identified an instance of traffic sent
using the Financial Information eXchange (FIX) protocol [14].
This protocol is used for sending metadata and commands re-
lated to securities trading. Manual analysis definitively traced
this FIX traffic to a financial services startup: the organization
likely previously hosted a FIX service at the IP address, but
failed to remove all latent configuration when the service was
decommissioned. The traffic contained credentials and further
interaction would likely result in receiving information on
transactions. We separately sent disclosures about this incident
in addition to those discussed in Appendix A.

Logging and Metrics. We found many instances of mobile,
web, and other applications sending logging, crash report,
and metrics traffic to controlled IP addresses. These log
requests contained tracebacks of application errors from mo-
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Fig. 4: Ports and IPs contacted by each source IP. Only
traffic under the bottom left data point is retained.

We briefly describe the components of our filtering
apparatus, which consists of four steps (results of each
filtering step on dataset size are shown in Table IV):

Network. Coarse network filtering eliminates obvi-
ously non-legitimate traffic by filtering against several
publicly-available blocklists [54]. Blocklists have the
advantage that they have generally been independently
evaluated, and are intended to have low false positives.
Transport. Consider the IPs and ports on our servers
accessed by each source IP. We filter out sessions from
source IPs that contacted either multiple of our IP
addresses, or multiple ports, as this is likely scanner or
other exploit traffic. As shown in Figure 4, the majority
of traffic is sourced from IP addresses that exhibit
scanning behavior. While this filters out legitimate
traffic (e.g., cloud service traffic), it is an acceptable
trade-off to reduce the size of our dataset.
Session. Clients that fail to complete the TCP hand-
shake process or that do not send any data upon
connecting are likely scanner traffic and are therefore
also ignored. Much of this traffic is associated with
distributed botnets [46], [55]. In other cases, the traffic
may be legitimate and exploitable, but uses a protocol
(such as Telnet) that does not initially send a payload.
Such protocols are not as readily studied by our
approach and can therefore be excluded.
Application. We use network intrusion detection rules
from Snort [56] to further eliminate bot traffic, as well
as additional manually-generated rules to filter peer-
to-peer (e.g., BitTorrent and Bitcoin traffic that does
not trust connected peers) and other cloud traffic that
is likely not exploitable.

bile devices, metadata on device characteristics, and personal
information. In some cases log entries were traceable back to
specific websites or applications. For example, an online recipe
site inadvertently sent analytics messages, including email IDs,
viewed articles, and user IP address. Another IP, apparently as-
sociated with an advertising metrics service, received end-user
device IMEI info (against best practices in smartphone privacy
[57]). An adversary allocating IP addresses in the cloud would
receive such traffic automatically, and could collect personal
information for use in spearphishing campaigns.

Webhooks. In the same way that cloud services can send
messages directly to IP addresses, third-party hosted services
could be configured to communicate with IP addresses that are
no longer controlled. We observed traffic from Teamwork [15],
BitBucket [16], and Segment [17] targeted at cloud IP ad-
dresses, likely caused by tenants who previously configured
these IP addresses to receive notifications when events oc-
curred in these platforms. In the case of Segment, for instance,
webhook traffic contained recipient email addresses. Traffic
from a Teamwork webhook apparently contained user commu-
nications from the platform. Webhooks are a convenient way
to integrate custom software with third-party services. Yet,
our study suggests that the information within these webhook
messages may be intercepted by adversaries due to latent
configuration. While tenants must ensure their webhooks are
removed when receiving services are decommissioned, service
providers also have an opportunity to protect customers by
eliminating sensitive information from messages.

Tenant APIs. We additionally found traffic from applications
attempting to communicate with APIs hosted by previous
tenants. These endpoints could have been hardcoded into
application source code or configured through some other
channel. In one case, we observed what appeared to be search
query autocomplete traffic from a notable third-party mobile
browser (8509 such requests to a single IP address). Attempts
were not made to decode this traffic for ethical reasons.

Independence from DNS. While the varied nature of third-
party services makes this class of vulnerabilities difficult to
quantify, third-party service traffic that does contain DNS
information can be used to establish bounds on DNS indepen-
dence. Of the 2.95M TCP sessions observed after filtering,
1.20M contained HTTP or TLS requests. Of these, 970 k
contained host headers. This header either directly contained
an IP address (398 k/41%), contained an IPBN (283 k/29%),
or contained other data such as a domain name (288 k/30%).
Presence of IPs and IPBNs in these host headers suggests
that these connections (as much as 70%) were not configured
through some other DNS-based configuration. Note that non-
HTTP/TLS traffic may exhibit different behavior, and many
other protocols (e.g., Postgres) do not send host information
on connections, preventing analysis.

The variety of protocols and applications observed sug-
gests that latent configuration through third-party services
is a widespread problem. Such vulnerabilities can provide
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an adversary with traffic intended for internal use within
applications, and can therefore disclose data that is highly
sensitive. Further, the use of honeypots targeting common
third-party services could likely extract this information in a
fully-automated fashion across a high percentage of cloud IPs
at minimal cost. Our analysis also suggests that much of this
traffic is configured independently from DNS.

C. Attributing Vulnerabilities through DNS

Recall, we allocate IP addresses and determine exploitable
domains associated with these addresses based on requests
from clients. In examining the contents of incoming requests,
we can identify whom the requests are intended for (and thus
intuit the likely application). Specifically, in a large number of
sessions, banner information (the initial payload sent by the
client upon connecting) includes the expected DNS hostname
and identifies the expected service (owner). An adversary
would use this information to pose as the service by creating
a plausible looking interface for that domain or replicate an
existing host (e.g., phishing websites).

We observed 168 million client requests with DNS in-
formation in banner data. Of those, 14 309 were vali-
dated to real domain names (i.e., the request was re-
ceived by the IP address that DNS actually resolved to),
with 719 unique domains listed in the top million (us-
ing Tranco [58]). We additionally filtered domain names
that were synonymous with IP addresses (e.g., IPBNs such
as ec2-203-0-113-15.compute-1.amazonaws.com
and wildcard DNS providers such as xip.io). We attribute
the remaining sessions largely to botnet traffic and other back-
ground noise. We focus on the 14 309 sessions that mapped
to valid DNS records, as they are of most likely value.

The sessions identified 5446 unique second-level domains
(SLDs, e.g., example.com), 495 of which had more than
one unique subdomain identified. The domains occurred in 231
unique eTLDs (from the Mozilla Public Suffix List [59]) with
.com representing 63% of the unique hostnames, .net repre-
senting 6.2%, .org at 3.9%, .io at 3.2%, and .com.br at
2.7% each. The remainder of the domains belonged to a mix
of lesser-used ICANN-issued names (e.g., .info) country-
coded TLDs (e.g., .co.uk and .ru), and gTLDs (e.g.,
.cloud). Note that because all data was collected from the
us-east-1 region, it may be biased towards domains related
to organizations in the eastern side of the United States. Other
regions will likely involve other domains and TLDs based on
their geographic location and consumer populations.

Next, we investigated what kinds of domains may be
vulnerable based on the banner data. Table V shows do-
mains based on two rankings. The left-hand side of the
table ranks the domains that had the most unique hostnames
observed in incoming requests. Here several of the highest
ranking domains were from organizations that provide cus-
tom workflows or information processing services built on
the cloud (e.g., redhat.com, service-now.com, and
appdomain.cloud). We posit that the frequency of vulner-
able subdomains in this class may be a result of bugs related

to automated provisioning of servers, where latent configura-
tion is not automatically removed during decommissioning.
A second class of domains is characterized by dynamic
DNS offerings and related services (e.g., boxcast.com
and duckdns.org). The hosts behind these services are
generally related to dynamic customers with short-lived needs,
and are therefore less likely to be exploitable. We additionally
saw domains that were used indirectly to host other domains
(e.g., subdomains of akadns.net). In some cases these
subdomains appear to refer to SLDs for which we also directly
received traffic. The last class of domains relates to miscon-
figurations associated with web applications. For example, we
observed a number of sessions that relate to ring.com (IoT
doorbell cameras), wostreaming.net (advertising media),
and yummly.com (recipe sharing) applications.

The right-hand side of Table V shows the rankings of
the discovered websites by their Tranco site ranking (those
in the top 1,000 are shown). The list contains domains
from entertainment, (e.g., cnn.com, go.com (Disney),
and usatoday.com), technology, (e.g., intel.com and
nvidia.com), as well as website development/hosting, (e.g.,
wix.com). Interestingly, we also saw incoming traffic to U.S.
government (e.g., hhs.gov and justice.gov) services.

We also observed that the top list contains 4 aca-
demic institutions (e.g., harvard.edu, cornell.edu,
upenn.edu, and jhu.edu). This may be a reflection of
the ranking system itself (which is partially based on the
number of external subnets that link to the domain) that
tends to favor well-known universities. These higher education
institutions have large dynamic, autonomous, and fragmented
web presences that may have led to server misconfigurations.
In total 17 .edu domains exhibited latent configuration,
with others under international domains such as .edu.mx.
We additionally analyzed the subdomain depth of discovered

domains. We denote subdomain depth for a given domain
as the minimum depth of any discovered subdomain for that
domain (e.g., sub.example.com has depth 1). Within the
23 top 1000 ranked domains, 19 (83%) had a vulnerable
subdomain of depth ≤ 2. Among domains in the top million,
the mean subdomain depth was 1.4. Among all domains,
the mean subdomain depth was 0.75. This implies that some
domains had dangling DNS at the SLD level—indeed, 14 top-
million domains had dangling DNS records at the SLD level.

Inferring Automation. To understand what portion of latent
DNS configuration was attributable to automation, we obtained
two heuristic metrics: (1) 325 (6%) vulnerable domains had
a subdomain with at least 2 digits in it (we identify 2 digits
based on conversations with affected organizations who used
automation to create quasi-random subdomain names), and
(2) 25 (0.5%) domains directly encoded the IP address in
a subdomain name. While accounting for a small fraction
of unique domains, digit and IP entries accounted for 1159
(16%) and 95 (1.3%) subdomains, respectively. The relatively
low percentage of domains matching these criteria implies

10



TABLE V: Observed exploitable domains in the top 1,000 by site ranking and by number of unique exploitable server instances.

Top Domains by Unique Hosts Top Domains by Site Ranking
Site rank Unique hosts Subdomain Depth Domain Site rank Unique hosts Subdomain Depth Domain

450 107 2 redhat.com 31 2 4 amazonaws.com
8543 72 2 splunk.com 68 6 2 akadns.net
1593 65 2 service-now.com 76 2 2 cnn.com

588 482 57 2 filemaker-cloud.com 129 1 2 wix.com
76 965 47 2 boxcast.com 146 2 2 harvard.edu
11 868 34 3 appdomain.cloud 164 33 2 go.com

164 33 2 go.com 177 1 1 usatoday.com
21 057 32 1 duckdns.org 284 1 1 intuit.com
7691 25 1 hostedrmm.com 298 1 2 cornell.edu
7671 22 2 yummly.com 300 2 1 intel.com

14 349 22 1 glance.net 302 2 1 slack.com
225 042 17 1 bitnamiapp.com 434 1 1 vice.com
291 213 16 1 qmetry.com 450 107 2 redhat.com
54 293 15 1 wostreaming.net 470 4 1 trafficmanager.net
2018 14 1 ring.com 495 1 2 upenn.edu

65 484 14 1 otgs.work 497 1 2 elsevier.com
161 178 12 2 everlaw.com 535 1 1 ieee.org
226 628 12 2 reltio.com 578 1 3 jhu.edu
11 565 11 3 acquia.com 588 1 1 nvidia.com
16 428 10 2 psdops.com 618 1 3 lenovo.com

692 115 10 2 adikteev.io 767 3 3 ea.com
13 518 9 1 gannettdigital.com 782 2 1 hhs.gov
80 657 9 1 neulion.com 957 1 1 justice.gov

that many of the discovered vulnerabilities likely relate to
manually-created domains, rather than automation.

D. Disclosure and Root Causes

While the majority of vulnerability disclosure was coordi-
nated through AWS, we reached out directly to a subset of af-
fected organizations seeking informal feedback. Because cloud
service disclosures were performed through Amazon, we did
not have visibility into specific affected tenants, and therefore
targets for direct contact were selected based on DNS results.
We contacted 6 academic institutions, 1 government agency, 1
non-profit, and 9 industrial enterprises (including 6 high-tech,
2 financial, and 1 travel company), with organizations selected
based on effect size, breadth, and expectation of engagement
with academic research. For each of these 17 organizations, we
reached out via initial email using security contact information
as available, broadly overviewing our findings and scheduling
time to hold meetings with security representatives. During
these scheduled meetings, we initially presented broad study
results, followed by specifics of vulnerabilities found in the
organization. We also outlined available data from the study
that could be shared for deeper root cause analysis.

While each conference concluded with a free-form discus-
sion of results, we primarily asked organizations to provide
answers to a set of pre-scripted questions (Appendix D)
after the meeting. These questions sought to understand the
technical and organizational factors that led to the discovered
vulnerabilities. Such qualitative results were a byproduct of
our disclosure process, yet provide initial results that might
motivate a more formal user study of latent configuration.

Many root causes discussed map readily to misconfiguration
types discussed in prior work. Within the taxonomy introduced
by Dietrich et. al [60], results of the discussions generally

fell under the Integration and Deployment, No hardening, and
Scripting type codes, with an additional Oversight type that
had not been previously considered.

Integration & Deployment. The first source of latent con-
figurations asserted by organizations was the lack of good
hygiene in deploying services to the cloud. Many of these
problems were the result of lift-and-shift deployments: moving
an internal service such as email or data processing from an
internal server to the cloud with minimal reconfiguration or
redesign. If the deployed service is not adapted to properly
remove configurations upon decommissioning an instance,
there is the potential for latent configuration vulnerabilities.
Several of the respondents also stated that the problem was
made worse because the failure is often silent. In this case,
the latent configuration can exist for months or years without
any indication to the affected organizations.

No hardening. The second source of latent configurations
was attributed to simply not following best practices and es-
tablished procedures (e.g., using comprehensive configuration
management tools). In one case, we had an organization state
that the several hosts that were identified in the study were
all the result of one training organization that did not properly
clean up trainee’s work. Other cases were similar. It is notable
that the organizations frequently expressed that there was a
need to better educate its members on best practices, and to
revisit recommendations to emphasize the decommissioning
phase of the service deployment life cycle.

Scripting. In some cases, organizations expressed that la-
tent configurations were created as the result of automation.
Rather than configuration management tools (e.g. CloudFor-
mation [61] or Terraform [62]), these tenants had ad hoc
scripts that automated creation of resources. Inevitably, the

11



scripts did not consider the full configuration lifecycle, and
ultimately introduced latent configuration vulnerabilities when
the underlying compute resources were decommissioned.

Oversight. Underlying the above issues was the unmonitored
nature of cloud use within organizations. Many organizations
expressed that each part of the organization is free to create
instances and configurations that are unseen by the security
departments that are responsible for managing the enterprise
as a whole. For example, one academic institution noted that
they were aware of at least 140 different accounts across many
departments that were used to create AWS instances. This lack
of control, plus the (sometimes) lack of sophistication by the
users provisioning cloud resources, led to some organizations
seeing cloud use as a kind of technical “wild west”.

Ethics. Our disclosure process (Appendix A) ensured that no
personal information would be conveyed during disclosure, as
all contacted parties were representatives of organizations and
not speaking as individuals. As such, our disclosures were
determined to be exempt by our institutional review board
(IRB) as not human subjects research.

VII. DEFENSES AND MITIGATIONS

Cloud Squatting ultimately results from a tenant’s failure
to properly decommission configuration. As a result, the most
compelling defenses take the form of best practices by tenants.
Even when tenants are unable to adopt best practices, however,
cloud providers can take actions to reduce the prevalence and
exploitability of latent configuration. We begin by surveying
known defenses against dangling DNS that generalize to latent
configuration, then discuss the effect of IP allocation policies
on mitigating the risk of IP reuse. We conclude by discussing
the actions taken by Amazon in response to our study.

A. Best Practices

Preventing misconfiguration. Classical web service models
often relied on static IPs assigned to services [63], with long-
lived configuration such as DNS referencing these addresses.
In public clouds, this assumption can break down to the
detriment of security. When designing services on public
clouds, care should be taken to ensure that references to service
IPs are either managed by the cloud provider (i.e., the cloud
provider resolves a unique resource, such as a domain name, to
an IP address while ensuring latent configuration is prevented),
or some configuration manager or policy. In each case, cloud
providers also have the opportunity to encourage best practices
and alert tenants when latent configuration exists.

Leveraging DNS. While our work focuses on configuration
that exists beyond DNS, many in the community have demon-
strated compelling defenses when DNS is used as part of
configuration. For instance, recent work suggests that changes
to TLS certificate issuance can be made resistant to dangling
DNS [4], and using such securely-allocated certificates for
server/client authentication would prevent latent configuration
from being exploited. As such, configurations that do not use
DNS (e.g. raw IP addresses or IPBNs configured as cloud

service endpoints) can be reconfigured to resolve to the address
through DNS. In this way, existing solutions toward preventing
dangling DNS can be applied to these configurations.

DNS can also serve as a repository for automated configura-
tion management. When provisioning instances with public IP
addresses on AWS, tenants are currently provided with an IP-
based DNS name (IPBN). Cloud providers could replace such
IP-based names with names that use unique identifiers, such as
the instance ID. When the service is deprovisioned, such DNS
records would be deleted automatically, thereby preventing
latent configuration. While Amazon recently released such a
feature (Resource-based naming [64]) for private IP addresses,
it is at present not supported for public IPs.

TLS and pre-shared keys. When client and server can
authenticate using keys created independently of latent con-
figuration, the latent configuration no longer poses a threat.
For instance, applications could contain a pre-shared certificate
for server communication or require a certificate authority that
does not validate certificates based on DNS. This practice is
often referred to as leaf or CA certificate pinning [65].

Preventing IP Reuse. IP reuse is a unique property of public
clouds using shared IP pools, and preventing this reuse ensures
that services cannot fall victim to IP use-after-free exploits.
This can be accomplished through existing bring your own
IP (BYOIP) offerings, which allow tenants to migrate their
owned IPv4 ranges to a public cloud. Services provisioned
within this IP space will not have their IP addresses reused
by other tenants, preventing cloud squatting. Cloud providers
can improve best practices and documentation to demonstrate
this benefit, and encourage larger tenants to leverage BYOIP to
benefit security. Transitioning to IPv6 for networking also pre-
vents IP reuse, as the large address space can be segmented per
tenant. Unfortunately, publicly-facing services (e.g., logging,
metrics, webhooks, and API endpoints) must still generally be
exposed at some IPv4 endpoint for compatibility [66].

In other cases, using public IP addresses is unnecessary. For
instance, some managed cloud services (such as Application
Gateway) can communicate with backend services through
private IP addresses (known within AWS as Virtual Private
Cloud or VPC [67]). When private IP addresses are used, there
is no risk of reuse by other tenants, as the IP address is only
valid within the context of the individual tenant. When this
route is available, cloud squatting is effectively prevented.

B. Mitigations

Detecting latent configuration. When a cloud provider has a
complete view of configuration and IP address allocation (i.e.,
managed cloud services connecting to cloud-managed IPs),
they can detect when a tenant references an IP address that
they no longer control. Control-plane information from a given
cloud service can be cross-referenced against IP allocation
logs and alerts can be automatically sent to tenants. In addi-
tion to cross-referencing configuration directly referencing IP
addresses, cloud providers could perform DNS resolution on
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domains used in configuration to determine if they reference
a tenant’s previously-controlled IP address.

Dangling DNS records are a clear place to start. A records
to raw AWS IPs or CNAME records that resolve to raw IPs
(e.g., via IPBNs) can lead to a vulnerability when the instance
is decommissioned but DNS records are not removed. When
DNS resolution and IP allocation are both controlled by the
cloud provider, remediation is possible. A records configured
through the provider’s DNS can be cross-checked against
IP allocation without interacting with any tenant resources.
In addition, the cloud provider might be able to remove a
DNS record automatically. More broadly, cloud providers can
play a key role in preventing latent DNS configuration by
discouraging the use of raw IP/IPBN references.

The ability to cross-reference control-plane information also
opens the possibility for cloud providers to interactively notify
users of latent configuration during decommissioning. When a
user decommissions a server, services within the same account
could be checked for references to the IP in real-time, with
users given the option to directly remove latent configuration
along with the cloud server. For example, such a check would
prevent the leakage of data through SNS traffic when servers
are improperly decommissioned. While such an approach may
require additional complexity in cloud management consoles,
it may dramatically reduce the incidence of latent configura-
tion for manually-managed services.

IP Allocation Policy. Cloud providers currently allocate IPs
pseudo-randomly from a pool. New allocation policies can
prevent adversaries from exploiting a large number of IP ad-
dresses, while being transparent to tenants and complementary
to other defenses. We propose IP Tagging, and evaluate it
against the existing random allocation, and a least-recently-
used (LRU, the oldest address is always allocated) allocation.

Under IP Tagging, when an IP address is released, it is
tagged with both the release time and the tenant. When a new
IP is requested, preference is first given to IP addresses that
the tenant previously released, followed by the address that has
been in the pool the longest. Tagging prevents cloud squatting
in multiple ways: (1) Adversaries are prevented from scanning
the entire IP space by allocating many instances, (2) tenants
receive their same IP addresses back, reducing the number
of tenants associated with each IP address and therefore the
likelihood of any individual IP address being exploitable—in
essence allowing the allocations to self-partition by tenant.

We perform a brief experiment simulating policies on a
cloud IP address pool. Simulated tenant agents allocate and
deallocate IPs from the pool randomly up to a quota. An adver-
sarial agent allocates IP addresses with the goal of observing
traffic intended for previous tenants. IPs are allocated for a
fixed duration with a maximum quota of simultaneous IPs
allocated (as observed in AWS). The simulation measures the
efficacy of each allocation policy through (a) the number of
unique addresses allocated to the simulated adversary, (b) how
long ago a previous tenant controlled the assigned addresses,
and (c) how many tenants are associated with each address.

AMAZON ACTIONS

In response to this study and a subsequent internal
audit of AWS deployments, Amazon is performing the
following actions to assist AWS customers:
Cloud Configuration. When cloud services can be
configured to interact with an AWS compute resource,
the management console is being updated to alert users
when they subscribe elastic IP addresses directly to
SNS Topics or health checks.
Expanded scanning/disclosure of vulnerabilities.
Amazon is developing tools that analyze control-plane
information to locate customers with current miscon-
figurations across all tenants and regions. The outputs
of scans will be used to send notices to customers with
misconfigured cloud services to review their configu-
ration for SNS topics and Route53 heath checks.
Automated Policy Enforcement. Amazon is devel-
oping managed Config rules that customers can apply
to their accounts within an organization. These Config
Rules can be configured to prevent, remediate, or alert
on cloud assets that meet the conditions of the rules.
Updated Best Practices. AWS is updating Route53
and SNS best practices documentation to recommend
customers avoid tying services and configurations to
elastic IPs and ensuring good hygiene for server in-
stantiating and decommissioning. For instance, best
practice documentation for SNS will discuss the risks
of failing to remove subscriptions, especially when
raw IP addresses of AWS instances and unencrypted
messages are used.

TABLE VI: Experimental results of IP pool simulation.

Policy Unique IPs Mean Prev. Tenants Median Reuse Time

RANDOM 377 596 228.2 5.7× 103 s
LRU 385 774 209.6 9.2× 103 s

TAGGING 240 2.387 2.9× 106 s

Our simulation matches parameters observed in
us-east-1a, with 673 k unique IPs modeled. 100 k
tenants are modeled, with a new tenant quota selected at
random every 10 minutes. IPs are allocated and deallocated
to reach this target and assigned to tenants at random. The
simulator could also be augmented with actual IP allocation
traces from a public cloud, though such a dataset is not
available. The adversarial agent holds IP addresses for 10
minutes with a quota of 60 addresses (similar to the per-zone
quota from our measurement study). A total of 581 k IPs
were allocated by the adversary under each policy, again
mirroring our actual experiment.

Our results are shown in Table VI. While an LRU policy
increases the median reuse time (62% increase vs random
allocation), IP Tagging has the greatest impact on all three
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metrics. Unique IPs are reduced by 99.94%, mean previous
tenants by 98.95%, and reuse time is increased by 514 x
compared to random allocation. Note that, while allocating
more addresses under both LRU and RANDOM would further
increase coverage of unique IPs, under the Tagging policy IPs
have been limited to a constant: with 60 simultaneous IPs
allocated for 10 minutes each and a cooldown of 30min only
240 IPs are ever seen.

Our analysis of IP tagging currently assumes a single-tenant
adversary, wherein the cloud provider can apply the policy to
effectively prevent a large number of IPs from being observed.
An adversary could partially bypass this mitigation using
multiple cloud accounts. In this case, however, IP tagging
still has benefits: (1) reduced overall contention in the address
pool would increase the interval between IP address reuse,
providing more time for latent configuration to be removed,
and (2) previously-used IPs by benign tenants would be
recycled to the tenant, reducing the number of IPs with which
they could potentially associate latent configuration. Further
investigation on the affects of IP allocation policies in clouds
is warranted in future works.

C. Deployed Mitigations

In the interest of ethical disclosure (see Appendix A) we
worked directly with AWS to share results and discuss mitiga-
tions. Our initial discussions began in June 2021 and continue
as of the submission of this paper. AWS has performed internal
reviews which confirmed potential misconfigurations existed
over all AWS regions. In response and detailed in the side-bar
(reviewed and confirmed to be accurate by AWS on August
17, 2021), they have taken a number of actions to help their
customer community. Several of these actions are similar to
those we identified, but others are oriented toward existing
AWS services (and thus are less general-purpose solutions).
However, those, like ours are directed towards many of the
same root cause issues—technical and organizational—that we
identified in the study and disclosure.

VIII. CONCLUSIONS

The advantages of public clouds are not without architec-
tural and security risks: our study has confirmed that, not
only are latent configuration vulnerabilities prevalent across
organizations of all sizes and verticals, but the classes of
configurations leading to these vulnerabilities are diverse. We
conclude that latent configuration represents a fundamental
security risk in the shared networking environment of public
clouds, and emphasize that care must be taken by cloud
tenants such that service decommissioning does not introduce
latent configuration. At the same time, our investigation of
mitigations shows that there is reason for optimism: scanning
techniques available to—and soon to be deployed by—cloud
providers can detect and potentially correct latent configu-
ration vulnerabilities automatically, and changes to IP pool
allocation prevent exploitation of vulnerabilities.

Root causes of latent configuration span beyond purely
technical. Affected parties overwhelmingly emphasized orga-

nizational concerns: large organizations using public clouds
often have multiple accounts (up to 140 accounts in one case)
provisioning services with minimal central oversight. Further
complicating cloud use for organizations is the emphasis on
transitioning on-premises services to the cloud (lift-and-shift),
which additionally transfers the implicit assumptions of these
services such as non-shared resources. Because of the shared
responsibility model, tenants will face the consequences of
latent configuration unless it is properly managed.

Beyond the mitigations presented, our work suggests that
latent configuration is a fundamental risk of shared computing
environments such as public clouds. However, cloud providers
and the security community generally have the opportunity to
improve the security postures of cloud tenants: existing and
new best practices can reduce dependence on configurations
that may become latent. Automation also plays a key role:
platforms that are sensitive to configuration hygiene can be
secure by default, providing guarantees against latent configu-
ration. Cloud providers can further assist by providing policy
enforcement of safe configuration at the organization-level. In
these ways, the benefits of public clouds can be enjoyed while
also ensuring security of tenant services.
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APPENDIX A
VULNERABILITY DISCLOSURES

As one might expect, the disclosures required by this study
were complex. The number of organizations involved rendered
it logistically impossible for our academic research to perform
tenant disclosures. We divided our disclosure into two phases,
one working with Amazon and the second through a series
of direct tenant organization communications (email followed
by a virtual discussion). We discuss the timing and processes
associated with each of these activities below.

A. Amazon-Coordinated Disclosure

We first became aware of the scale of the results presented
throughout in late May 2021. Following internal discussion
and study validation, it became clear that direct handling
of the disclosures by us would be logistically impossible.
Moreover, we observed that the cloud provider (in this case
Amazon AWS) would be in a better position to aid affected
organizations, identify other vulnerable tenants, and augment
their internal infrastructure to detect and prevent exploitation
in the future (see Amazon mitigations in Section VII). We
reached out to Amazon May 27, 2021 as an initial contact.
We have met with the AWS technical team weekly since June
4, 2021 and continue as of this submission for review.

The substance of these meetings initially supported dis-
closures, and evolved into broader discussions of causes and
mitigations. During our first meeting we shared the identified
tenant vulnerabilities and characterized the scope and detail
of our results. We provided (a) a set of PowerPoint slides
detailing the scope and method of this study, (b) a list of the
affected domains, IP addresses and timestamps, (c) a list of
servers provisioned by experimental apparatus, and (d) a list
of vulnerable cloud configurations detected (AWS identifiers
associated with cloud services such SNS topics, CloudFront
distribution IDs). Beyond this, we have not shared any other
captured tenant-specific data such as received headers, PCAP
traces or other artifacts. We continue to share new results,
detection methods, and mitigations as they are identified with
AWS as discoveries warrant.

Amazon has informally shared results of their internal audits
and discussed their plans for tenant notification (expected to
occur in late August 2021). The bidirectional conversations
have evolved to topics of root causes and mitigations, includ-
ing those adopted by Amazon and discussed in the previous
sections. Note that all statements and commentary attributed
to Amazon in this paper have been confirmed for accuracy by
their technical staff prior to submission.

B. Direct Tenant Disclosure

The second class of disclosures were performed by directly
contacting tenants (see Section VI-D). The 17 organizations
were initially contacted in mid-July 2021 and discussions
continued until first week of August. All discussions were
online and lasted from 20 minutes to an hour, depending on
the organization and the data we were disclosing.

The process for each discussion was the same. We would
initially reach out via email to the security office or other
contact within the organization indicating that we had found
an issue as part of our study (which we would provide a brief
overview of in the email). An online meeting was scheduled.
Members of our research team and staff, as would a number
of personnel from the organization. The call would begin
with a brief overview of the study, its high level results, and
then provide a brief discussion of the data we had relating
to the organization. Lastly, we would introduce the questions
identified in Appendix D. We proposed that they could answer
the questions in the meeting, via email response, or not at all.
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Immediately after the online meeting we would follow
up with an email containing (a) a set of PowerPoint slides
detailing the scope and method of this study, (b) metadata on
affected organizational servers that received traffic (IP, times-
tamp created, length of time server ran), (c) the related PCAPs
of traffic received, and (d) log data of requests (timestamp,
domain, header data), and (e) the list of questions relating to
root causes. Organizations would reply to these emails with
responses at their discretion.

APPENDIX B
DATA HANDLING

Sensitive data was received during our experiment, includ-
ing tenant organizational data, credentials, and PII. For this
reason, we created the following process for handling the data:

1) All collected data was stored in an encrypted S3 bucket
(AWS storage unit).

2) Collected data was migrated to a special purpose stor-
age/compute server. Storage was fully encrypted and the
server was only used to store and process study data.

3) Only one person in the team was given credentials to the
server. Physical access to the server was also restricted.

4) Any sharing of the study data (e.g., for the purpose
of sharing with tenants following disclosure) was per-
formed using secure transfer protocols and limited to
the minimal necessary data.

5) Data will be securely deleted when it is no longer
needed. The device will be securely wiped at the con-
clusion of this study.

Note that the data handling process was documented (in much
more detail), reviewed, and approved by the security team
(CISO Office) of our home institution, and covered under our
IRB exemption.

APPENDIX C
OTHER DISCLOSURES

While our measurement study was performed and found
concrete vulnerabilities on Amazon Web Services, the nature
of our findings suggests that the same issues are likely preva-
lent on other public clouds. As such, disclosures to other major
cloud providers are ongoing as this paper is being submitted.

APPENDIX D
DISCLOSURE QUESTIONS

After sending disclosures to organizations, we performed
disclosure discussions to better understand the scope and
impact of Cloud Squatting attacks. For transparency, we detail
our scripted questions below:

1) Was the organization aware that domains pointed to stale
cloud IP addresses?

2) What organizations within your organization would be
involved in the mitigation of the leakage and the poten-
tial notification process?

3) What kinds of services is your organization currently
deploying in the cloud?

4) Are these services commercial or internally developed?
To the degree that your organization can share, what
kinds of technical platforms are they developed on,
i.e., middleware stacks, programming languages, cloud
configuration management and/or third-party software?

5) For services deployed, are these internal or externally
facing, i.e., for internal use of customer interaction?

6) Is the organization aware or can the organization spec-
ulate on the root causes of this vulnerability?

7) Please add any additional information or comments the
organization feels are relevant.

Note that we indicated in our meetings and emails that we
committed to anonymizing the data returned and would not
directly quote any response without prior approval.
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APPENDIX E
TRAFFIC ANALYSIS ARCHITECTURE

Our filtering proceeds in four steps, roughly mirroring the
network, transport, session, and application layers of the OSI
model. Here we provide extended description of several of
these steps.
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Fig. 5: Distribution of IPs contacted and total connections from
each source IP. Source IPs with a large number of connections
also generally connect to a large number of IPs

1) Transport Filtering: In the transport step, we consider
the IPs and ports on our servers accessed by each remote IP.
Intuitively, a client that accesses many IP addresses or many
ports is likely scanner or exploit traffic. To this end, we collect
statistics on the number of (IP, port) pairs contacted by each
remote IP, and then filter our dataset to only remote IPs that
access a single IP or port. Note that, while this may filter out
legitimate exploitable traffic, this is an acceptable trade-off to
reduce the size of the filtered dataset.

Figure 4 shows the distributions of number of IPs and
ports contacted and Figure 5 shows the distribution of number
of connections from IPs. We note similar access patterns
here to those seen by [48] on a popular content delivery
network, though there are some key differences: (1) our figures
demonstrate that session density is largely uniform across the
distribution, (2) sessions attributed to large senders (i.e., those
initiating many sessions) made a substantial contribution to
the total sessions considered.

2) Session Filtering: As many web scanners are imple-
mented using distributed botnets [46], [55], checking for
duplicate IP/port access does not effectively filter all traffic.
To target less sophisticated scanners (such as Mirai [46]) that
are distributed, we analyze and filter based on TCP session
behavior. Two types of traffic are removed: (1) traffic that
simply sends SYN packets to scan available ports, and (2)
traffic that completes TCP session initialization but does not
send any payload. In the first case, this traffic is clearly
not exploitable because no connection is established. In the

second, this traffic may be legitimate or exploitable, but uses
a protocol (such as Telnet) where the server is expected to
initiate the protocol. Such protocols are not as readily studied
by our approach and can therefore be excluded. This step
has no false negatives with respect to our detection goals, as
sessions that do not have a client payload would yield no
interesting information during manual analysis.

3) Application Filtering: We finally filter traffic at the
application layer. This step is the most complex and time-
intensive, so the previous filter steps contribute to the step
being tractable. In this step, we use existing network intrusion
detection rules from Snort [56], as well as additional manually-
generated rules targeted at peer-to-peer and other cloud traffic:

• Exploits. Snort is designed to detect exploit traffic against
specific vulnerabilities, but much of the traffic we mea-
sured targets configuration errors with shellcode exploits.
To this end we exclude traffic with markers of very com-
mon shellcode exploits: wget, curl, chmod, curl,
shell. We also exclude dnp3 and tds protocols as
manual analysis showed these legacy protocols were
exclusively shellcode spam.

• Peer-to-peer. Because the bootstrapping protocols of
many peer-to-peer protocols involve random IP scans,
these protocols made a large contribution to uninter-
esting traffic. Further, the semantics of these protocols
make them uninteresting for exploitation as they place
no trust in the connected server and do not rely on
potentially-latent configuration. We filtered Bittorrent,
Bitcoin, Skype, and IPFS traffic.

• Proxy traffic. We filtered large amounts of HTTP traffic
relating to proxy connections, likely intended to exploit
or research other network security issues. These filters
removed HTTP CONNECT methods and requests where
the request Path contained a full URI (i.e., starting with
http://). Such behavior is not generally used for proxy
traffic.

• Health checks. We received many HTTP Health Check
requests from Amazon Route53. Because this traffic is
studied independently it was excluded from this analysis.
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