
1

MLSNet: A Policy Complying Multilevel Security
Framework for Software Defined Networking

Stefan Achleitner, Quinn Burke, Student Member, IEEE,
Patrick McDaniel, Fellow, IEEE, Trent Jaeger, Member, IEEE,

Thomas La Porta, Fellow, IEEE, and Srikanth Krishnamurthy, Fellow, IEEE

Abstract—Ensuring that information flowing through a net-
work is secure from manipulation and eavesdropping by unau-
thorized parties is an important task for network administrators.
Many cyber attacks rely on a lack of network-level information
flow controls to successfully compromise a victim network. Once
an adversary exploits an initial entry point, they can eavesdrop
and move laterally within the network (e.g., scan and penetrate
internal nodes) to further their malicious goals. In this paper, we
propose a novel multilevel security (MLS) framework to enforce a
secure inter-node information flow policy within the network and
therein vastly reduce the attack surface available to an adversary
who has penetrated it. In contrast to prior work on multilevel
security in computer networks which relied on enforcing the
policy at network endpoints, we leverage the centralization of
software-defined networks (SDNs) by moving the task to the
controller and providing this service transparently to all network
nodes. Our framework, MLSNet, formalizes the generation of a
policy compliant network configuration (i.e., set of flow rules
on the SDN switches) as network optimization problems, with
the objectives of (1) maximizing the number of flows satisfying
all security constraints and (2) minimizing the security cost
of routing any remaining flows to guarantee availability. We
demonstrate that MLSNet can securely and efficiently route flows
that satisfy the security constraints and route the remaining flows
with a minimal security cost (e.g., route > 85% of flows, where
the heuristic achieves 89% and 87% of the optimal solutions for
the optimization problems).

Index Terms—Software-defined networks, security services,
security management.

I. INTRODUCTION

Ensuring that information flowing through a network is
secure from manipulation and eavesdropping by unauthorized

This research was sponsored by the U.S. Army Combat Capabilities
Development Command Army Research Laboratory and was accomplished
under Cooperative Agreement Number W911NF-13-2-0045 (ARL Cyber
Security CRA). The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Combat Capabilities Development
Command Army Research Laboratory or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on. This work was also
supported by the National Science Foundation under award CNS-1946022.

Stefan Achleitner was with the Department of Computer Science and
Engineering, The Pennsylvania State University, University Park, PA 16802
USA. He is now with Palo Alto Networks, Inc., Santa Clara, CA 95054 USA
(e-mail: stefan@stefanachleitner.com).

Quinn Burke, Patrick McDaniel, Trent Jaeger, and Thomas La Porta are
with the Department of Computer Science and Engineering, The Pennsylvania
State University, University Park, PA 16802 USA (e-mail: qkb5007@psu.edu;
mcdaniel@cse.psu.edu; trj1@psu.edu; tfl12@psu.edu).

Srikanth Krishnamurthy is with the Department of Computer Science and
Engineering, University of California, Riverside, Riverside, CA 92521 USA
(e-mail: krish@cs.ucr.edu).

parties is an important task for network administrators. Many
attacks against modern networks rely on a lack of network-
level information flow controls to infiltrate an organizational
network. Here, adversaries initially subvert edge defenses to
target and compromise an internal node. Once inside the net-
work, the adversary can probe network nodes or eavesdrop on
flows to penetrate further into the network [1]. This adversary-
enabling freedom of movement and lack of secure routing (to
prevent eavesdropping) can be cast as a classical information
flow problem in security [2].

Even with defenses such as firewalls, information flow
control in networks often fails: configuration is error-prone [3],
and compromised internal hosts may initiate flows that never
have to cross a firewall boundary [4]. Thus, adversaries can
exploit firewall rule conflicts to exfiltrate information, and in-
ternal adversaries can eavesdrop and move laterally (i.e., scan
and penetrate internal nodes) within their network boundary
without restriction. Fundamentally, they are enabled by a lack
of security policy governing what flows are permitted and what
paths they may take in the network.

Multilevel security (MLS) provides the means to enforce
such a policy. A multilevel security framework controls infor-
mation flow among entities of different security classes with
security labels (i.e., levels and categories) assigned to those
entities. In fact, multilevel security already plays a critical role
in controlling access to information for both military personnel
and employees of commercial businesses with different levels
of clearance [5]. Common use cases include controlling file
access in an operating system [6] or table access in a relational
database [7]. The notion of multilevel security can also be
applied to computer networks, where the MLS policy dictates
which nodes are allowed to communicate, what type of traffic
they may exchange, and what paths the flows may take in
the network. This strategy can prevent eavesdropping and
unrestricted lateral movement that plague modern networks.

Lu et al. [8] envisioned such a model that enforces the
information flow policy at network endpoints; however, the
scale and dynamic behavior of modern networks make deploy-
ing such an enforcement mechanism on every endpoint im-
practical. Despite this, the inherent centralization of software-
defined networks (SDNs) allows enforcement of a network-
level MLS policy in a scalable and efficient manner. Determi-
nation of whether or not flows are permitted can be done by
the controller, and the access-control policy can be enforced
by the data-plane switches in the form of flow rules—which
allows the service to be provided transparently to the entire

TABLE I
NOMENCLATURE AND NOTATION.

Notation Description
V Set of vertices in network graph G = {V,E}
E Set of edges in network graph G = {V,E}
F Set of packet flows to be accommodated
R Set of matching fields in a flow rule
A Set of action fields in a flow rule
S Set of subjects
O Set of objects
C Set of security categories
df Size of flow f ∈ F
κij (κ̃ij) Residual capacity of link (i, j), (i, j) ∈ E
σi Security level of node i, i ∈ V
λci Security category c at node i
L Set of labels that form the lattice

network.
Thus, in this paper, we propose an SDN-based MLS frame-

work to enforce an inter-node information flow policy that
preserves confidentiality. The challenge here is to fit the or-
ganizational needs by allowing entities to exchange permitted
flows while also configuring the network (by leveraging flow
rules) to be policy compliant. Permitted flows between two
endpoints may not always find a secure path due to limited
network resources (e.g., link capacity). Then, to guarantee
availability, a flow may have to be routed through an insecure
path. We refer to such a situation as a policy conflict, and each
conflict imposes a security cost in terms of the risk the flow
is being exposed to.

Unlike prior work [8], we approach the challenge of se-
curing information flow in the network by considering two
optimization models: one that can provide a secure network
configuration (i.e., composition of flows rules) that obeys the
security policy, supplemented by a model that can minimally
relax the security policy to ensure that every flow can be
routed. The key contributions are:

• An optimization model to maximize the number of flows
routed according to the given security policy in an SDN.
• An optimization model to minimize the security cost of

routing any remaining flows to guarantee availability.
• A method for constructing flow rules which adhere to a

given security policy.
• A comprehensive evaluation of MLSNet’s ability to gen-

erate policy compliant network configurations and resolve
policy conflicts in realistic network topologies.

II. DEFINITIONS AND BACKGROUND

In this section, we extend prior work’s [8] terms and
notations (Table I) to an SDN setting and provide background
on related network security threats and defenses, and MLS.

A. Term Definitions

Software centerCommercial center

DMZ

VPN

Workstations

Wifi

(trusted)
Public services

(untrusted)

(untrusted)
(untrusted)

(trusted) (trusted)

(trusted)

Internal services
(trusted)

trusted

trusted

trusted

untrusted

Fig. 1. A corporate network scenario, detailing different regions of a network
that may contain nodes (switches and hosts) of different security levels.

Node. A resource connected to a network (e.g., a user, server,
router, or SDN switch).
Subject. A node that initiates communication to other nodes
in the network.
Object. A node that either provides (provider) and/or receives
(receiver) information to/from subjects
Forwarding Node. A node (SDN switch) that processes
incoming flows according to the installed flow rules.
Controller. An application in the SDN control plane that
has a global view of the topology and installs flow rules to
forwarding nodes based on the security policy.
Security Levels. Hierarchical attributes (e.g., top-secret, pub-
lic) that indicate relative authorization power.
Security Categories. Non-hierarchical attributes (e.g., TCP,
IP) that offer finer-grained authorization (for any layer of the
network stack) besides the security level. In MLSNet, security
categories are only assigned to objects and subjects but not
forwarding nodes.
Security Label. The security level and categories combined,
used by the controller to admit or deny flows.

B. Network Threats to Confidentiality

Confidentiality ensures that information is only being ac-
cessed by authorized parties. In the context of networking,
preserving confidentiality means that only explicitly allowed
communication can flow between any two nodes in the net-
work to prevent data from falling into the hands of untrusted
entities. A lack of a formal communication policy to realize
this may allow adversaries who have compromised internal
nodes to explore the network or eavesdrop on flows. For
example, in Figure 1, a compromised trusted node in the
software center may be able to probe other nodes in the
software and commercial centers as they are all behind the
same firewall boundary; the firewall itself cannot prevent the
adversary from probing all nodes on TCP port 22. Indeed, this
is possible regardless of the (implicit) security level of the
nodes; however, we can reduce attacker capabilities (enforce
least-privilege) with multilevel security.

2

TABLE II
DEFENSES AGAINST DISCUSSED ATTACK TECHNIQUES.

MLSNet [18] [4] [20]
Packet spoofing × × - -

Lateral movement × - × -
Man-in-the-middle × - - ×

Recent work has demonstrated the ability of an adversary
to freely probe within their network boundary to recover
sensitive information about the network [9], [10], [11], [12],
[13], including active network hosts and even switch flow table
rules [14]. We observe that although discovered attacks on
networks in the literature pursue different goals, the strategies
of those posing a threat to confidentiality can be reduced to a
small set of techniques.

Packet Spoofing. Spoofing packets is the most common
technique. By spoofing, adversaries may be able to imperson-
ate other nodes to escalate privilege [15] or leak information
to untrustworthy nodes or outside of the network [16].

Lateral Movement. Adversaries can also move laterally by
probing many other nodes in the network. This nonessential
communication may allow them to extract sensitive informa-
tion from nodes of higher security levels or compromise nodes
and escalate privilege to move deeper into the network [14].

Man-in-the-Middle. Adversaries can also position them-
selves as a man-in-the-middle (MiTM), silently eavesdropping
on communications traversing them or within their broadcast
domain [17].

C. Proposed Defenses

Although there have been defenses proposed against some
of the discussed attack techniques, they are limited in their
ability to preserve confidentiality.

Source validation. To address the issue of packet spoofing,
source validation seeks to only permit packets into a network
which’s source IP is valid on the given network interface. This
is typically implemented via ingress filtering [18] in wide-area
networks; however, it is difficult to implement, especially in
data-center networks [19], and does not prevent adversaries
from spoofing nodes within their own subnetwork.

Firewalling. The primary purpose of a firewall is to prevent
unauthorized packets from entering a network or subnetwork.
However, firewalling is limited with respect to preventing
lateral movement as configuration is error-prone [3], and com-
promised internal hosts can still probe within their network
boundary [4] to compromise internal nodes.

Encryption. Active man-in-the-middle attacks (i.e., those
staged by spoofing) may be mitigated with source validation;
however, preventing passive MiTM (eavesdroppers) is difficult.
Even with services such as encryption, adversaries can still
perform traffic analysis to extract sensitive information [20].

D. Preserving Confidentiality with Multilevel Security

Broadly speaking, existing defenses solve distinct problems
and only partially address the issue of confidentiality. Adver-
saries are enabled by a lack of policy preventing them from

probing network nodes and eavesdropping on communications.
What is needed are means to specify what flows are permitted
and what paths they may take in the network.

MLS. A multi-level security policy provides the means to
prevent these problems with a secure flow model between en-
tities that are assigned specific security labels (i.e., a level and
categories). The security labels form a lattice structure, which
reflects a hierarchical ordering of their relative authorization
power. We consider a node’s label to be higher than another
node’s if the former’s level is greater than or equal to, and
the categories form a superset of, the latter’s. With respect to
confidentiality, information should only flow to nodes with the
same or higher security label to prevent the potential leakage
of sensitive data to nodes of lower security labels. This is
typically summarized as ”no read up, no write down”.

Network MLS. Multilevel security already plays a critical
role in controlling access to files and databases in military
and commercial business contexts [5], [6], [7]. This notion
can also be applied to computer networks to prevent the
eavesdropping and unrestricted lateral movement that plague
modern networks. For example, nodes with lower security
levels should not be able to probe or communicate with nodes
of higher levels on specific TCP ports, and sensitive (e.g., top-
secret) flows should not traverse a node of lower security level.
In this context, for communication to be permitted and routed
between two nodes, both nodes and any intermediate nodes
must adhere to the ”no read up, no write down” policy.

Lu et al. [8] envisioned such an MLS model that enforces
the information flow policy at network endpoints. The problem
with this approach is that the scale and dynamic behavior
of modern networks make deploying such an enforcement
mechanism on every endpoint impractical. However, the inher-
ent centralization of software-defined networks (SDNs) allows
enforcement of a network-level MLS policy in a scalable
and efficient manner1. Determination of whether or not flows
are permitted can be done by the controller, and the policy
can be enforced by the data-plane switches in the form of
flow rules. This offers the significant advantage over previous
work of allowing the service to be provided transparently to
the entire network, because network devices do not have to
run specialized software. The controller’s global view of the
network also offers greater flexibility as changes to labels and
policy can be reflected by simple changes to flow rules, as
opposed to manually re-configuring individual devices.

Ultimately, multilevel security can ensure that the network
achieves (to the degree possible) least-privilege isolation of
entities of different access classes (per their security labels).
Source nodes of certain levels are not permitted to, for exam-
ple, send data to any nodes of lower security level. Similarly,
switches of certain security levels are not permitted to forward
(specifically, receive then forward), or potentially eavesdrop,
flows of higher security levels. Thus, we denote the flow paths
in this paradigm as secure paths.

III. MLSNET OVERVIEW

1Note that, in general, SDNs suffer the threat of single-point-of-failure. In
the event of failure, MLSNet is just one of all controller applications affected,
and this problem is out of scope of this work.

3

In this section, we present our threat model, lattice of
security labels, and policy constraints for MLSNet.

A. Threat Model and Assumptions

For the assignment of security labels, we assume a Network
Security Officer (NSO), as defined by Lu et al. [8], who
assigns appropriate security labels (i.e., levels and categories)
to the network entities (e.g., endpoint devices and forwarding
nodes) 2. The assignment can be done by leveraging the
controller as it has a global view of the network, and it
must be based on a security assessment of the entities in
the network. For example, endpoints with unpatched operating
systems should be assigned a lower security level, as they are
more likely to contain vulnerabilities than others with the latest
software updates. IoT devices or forwarding nodes connected
to third-party networks can also be considered less secure,
and therefore should be assigned a lower security level and a
restricted set of categories. In contrast, endpoints containing
more sensitive (e.g., top-secret) data should have a higher
security level assigned since information flow to nodes with
lower levels should be prevented.

MLSNet aims to protect confidentiality by preventing leak-
age to unauthorized entities. We assume that nodes connected
to a network may become compromised and have malicious
intentions. In this scenario, we aim to limit an adversary’s
ability to further compromise the network.

Additionally, we assume the controller has an accurate view
of the topology (i.e., nodes have not been spoofed). MLS
cannot detect all forms of packet spoofing, and we rely on
other SDN-based defenses to detect packet spoofing against
the topology discovery service [9].

B. Multilevel Security Lattices for Computer Networks

To compute an SDN-based network configuration (set of
flow rules installed to SDN switches) that satisfies the security
policy, we must first consider security levels and categories. As
drawn from Denning [2], we order the security levels used in
our model according to the following: TopSecret (4) > Secret
(3) > Confidential (2) > Public (1). For an SDN, we define
the security categories as the packet types supported by the
OpenFlow [21] protocol for matching incoming packets to
flow rules: TCP, ICMP, etc. Although, any number of levels
and categories can be defined to separate classes of flows; we
just use the above descriptions as one example for evaluation.

The combination of a level and one or more categories
then forms the label at a node. These labels form a lattice,
a partially ordered set that reflects the secrecy and privilege
requirements of communication in the network. We consider
a node’s label to be higher than another node’s if the former’s
level is greater than or equal to, and the categories form a
superset of, the latter’s. This can be seen in the sample lattice
shown in Figure 2. We note that this construction may lead to
incomparable labels, where neither label is a subset/superset

2Note that if business continuity required any nodes to communicate, then
they should be labeled appropriately. Our assumption is that MLSNet is given
as input a set of labels deemed appropriate per business needs, while the
problem of changing labels to fit business needs is orthogonal to our work.

No access Public
[ARP, IP, TCP]

Secret
[ARP, IP, UDP, TCP, ICMP]

Fig. 2. An OpenFlow specific security lattice for the networks used in our
evaluations. Here, information may only flow to nodes with the same or higher
security label (i.e., from left to right in the lattice).

of the other, in which case communication would be denied by
default. This will preserve confidentiality but with the caveat
that not every flow may be accommodated.

Given the labels, the controller will install flow rules to the
SDN switches to allow communication only if the security
constraints are satisfied.

C. Security Policy Constraints

In this section, we discuss the access control and flow
control constraints, which form the basis of our security policy.

Access Control. As the first step to compute a security pol-
icy compliant network configuration, we determine if a subject
(e.g., user or process) initiating communication with an object
(e.g., file or resource) is allowed to exchange information with
the object based on the security levels and categories. To define
the constraints for access control, we have to consider if the
subject is communicating with a receiver object (i.e., object
receives from subject) or a provider object (i.e., subject sends
to object). If the subject communicates with a provider object,
then information flows from object o to subject s; inversely, if
object o is a receiver object, then information flows from s to o.
In case the object is both a provider and receiver object at the
same time, information flow between s and o is bidirectional.

Considering these three cases, given security level σ and
categories C of subject s and object o, the authorized informa-
tion flows are defined by a conventional MLS confidentiality
model [22]. For a subject s (e.g., workstation user) communi-
cating with a provider object o, (e.g., mail server in the DMZ
in Figure 1), the following constraint must be satisfied:

σo ≤ σs and Co ⊆ Cs,∀o ∈ O, s ∈ S (1)

Secondly, for a subject s (e.g., Wi-Fi client) communicating
with a receiver object o (e.g., network printer), the following
constraint must be satisfied:

σo ≥ σs and Co ⊇ Cs,∀o ∈ O, s ∈ S (2)

And for a subject s (e.g., workstation user) communicating
with an object o that is both a provider and receiver (e.g., git
repository), the following constraint must be satisfied:

σo = σs and Co = Cs,∀o ∈ O, s ∈ S (3)

Upon the initial arrival of a flow at the SDN controller from
a subject, it can be determined if the subject s is allowed
to exchange information with object o by considering the
access control constraints. While we define our framework
in a general way, security levels and categories are defined
specific to SDNs, as discussed in Section III-B.

Flow Control. If the access control constraints are satisfied,
information is allowed to flow between object o and subject s.

4

The next step before rule installation is for the controller to de-
termine whether there exists a path between o and s such that
the security level of any forwarding node on the path between o
and s is not lower than that of the flow. In Figure 1, the security
level of the switch connecting the publicly accessible Wi-Fi
to the network is lower compared to the switches connected
with the secure VPN, which are behind firewalls and only for
internal users. Traversing lower classified nodes puts a flow at
risk of being leaked to untrustworthy entities, being modified,
or otherwise disrupted. Thus, protection of confidentiality is
constrained by secure path selection, and MLSNet will choose
an optimal path (if one exists) that satisfies this constraint for
any candidate flow.

We can formulate such a constraint by stating that the
security level σ of a node j on the path between o and s
cannot be lower than the security level of the originating node
of the flow. As with the access control constraint, we have to
take into account whether a subject is communicating with a
provider object, a receiver object, or an object that is both. If
the subject is communicating with a provider object, then the
following constraint must be satisfied:

σo ≤ σj ,∀j ∈ V on path (o, s) for flow f ∈ F (4)

Secondly, if the subject is communicating with a receiver
object, then traffic is flowing from the subject toward the
object, and the following constraint must be satisfied:

σs ≤ σj ,∀j ∈ V on path (o, s) for flow f ∈ F (5)

Lastly, the access control constraint for communicating with
an object that is a receiver and provider at the same time
defines that s and o are required to have the same security
level as stated in (3). Therefore, the flow control for such a
case requires a forwarder node to have a security level that is
higher or equal compared to the level of s and o:

(σs, σo) ≤ σj ,∀j ∈ V on path (o, s) for flow f ∈ F (6)

In addition to the security labels, we also must consider the
capacity κij of a link (i, j) on a path between s and o for a flow
with a size of df : κij ≥ df∀(i, j) on path (o, s). As a trade-
off for providing flow control, policy compliant paths may be
longer than a shortest available path which does not consider
a security policy. Additionally, in case two nodes satisfy the
the access control constraint, there is no guarantee that a path
between the nodes can be found which fulfills the flow control
constraint. If such, there may be a path traversing nodes which
do not have a high enough security label. We refer to such
cases as policy conflicts. In Section IV-C, we present a model
to minimize policy conflicts on flow paths. In short, it will find
the best fitting configuration and report the exact locations on
paths where policy conflicts exist. By deploying additional
security mechanisms, such as declassification via encrypted
communication channels, such conflicts can be resolved, as
we further discuss in Section IV-F.

IV. POLICY COMPLIANT FLOWS

Given the policy constraints and security labels, we intro-
duce optimization models to compute a flow-rule-based net-

work configuration under consideration of policy compliance
and resource availability. We first introduce an integer linear
programming (ILP) model to maximize the number of flows
strictly satisfying all security constraints. If no path meeting
the required security constraints can be found for a flow f ,
the model will suggest to drop f . However, if all flows must
be routed, we propose a second ILP-based optimization model
that minimizes the sum of policy conflict values along paths
for the remaining flows.

A. Policy Compliant Flow Maximization Problem

In this section, we introduce a binary integer programming
model, a special case of integer linear programming (ILP),
to maximize the number of flows that can be accommodated
by a network under consideration of capacity and security
constraints. We refer to this problem as the policy compliant
flow maximization problem, and formulate the constraints in
(7). The optimization model shown determines if a network
configuration fulfilling the defined security policy can be found
to route the flows F between the subjects S and objects O. To
compute a path, we first introduce a binary decision variable
xfij to indicate if link (i, j) ∈ E is used on the path for flow
f (i.e., xfij = 1) or not (i.e., xfij = 0). To decide if a flow f
can be accommodated, we also introduce the binary decision
variable αf .

max
∑
f∈F

αf (7a)

s.t.∑
i:(i,s)∈E

xfis + αf =
∑

j:(s,j)∈E
xfsj , ∀f ∈ F

(7b)∑
j:(o,j)∈E

xfoj − α
f = 0, ∀f ∈ F

(7c)∑
i,j∈E

xfij =
∑
j,k∈E

xfjk, ∀f ∈ F

(7d)∑
i:(i,j)∈E

xfij ≤ 1, ∀f ∈ F, j ∈ V

(7e)∑
f∈F

xfij · d
f ≤ κij , ∀(i, j) ∈ E

(7f)

αf · lev(σo, σs) = αf , ∀o(f) ∈ O, s(f) ∈ S, f ∈ F
(7g)

αf · cat(λco, λcs) = αf ,

∀o(f) ∈ O, s(f) ∈ S, c ∈ C, f ∈ F
(7h)

xfij · orig(σo, σs) ≤ x
f
ij · σj ,

∀(i, j) ∈ E, o(f) ∈ O, s(f) ∈ S, f ∈ F
(7i)

xfij ∈ {0, 1}, ∀(i, j) ∈ E, f ∈ F

αf ∈ {0, 1}, ∀f ∈ F

In 7b, we add αf to the link indication variable xfis to
trigger a flow f at a subject s. To compute a path between the

5

subject node s and object node o, a flow f is consumed at a
node o, as stated in constraint 7c, by subtracting αf from the
link indication variable. In 7d, we state the flow preservation
constraint to ensure that the sum of incoming flows into a node
equals the sum of outgoing flows of a node.

We add constraint 7e to limit the number of visits of a
node to one for each flow. Constraint 7f ensures that the given
capacity κij of a link (i, j) ∈ E is not exceeded for forwarding
flows over a link i, j with a size of df per flow. Typically, in
bidirectional communication in computer networks the size of
the request flow is different than the size of the reply flow.
Since we assume symmetric routes, the flow size variable
df should be chosen to account for the flow size in both
directions. Additionally, since new flow demands typically
arrive at different times in a network, we can replace the above
link capacity κij with the residual capacity κ̃ij which states
the remaining capacity on a link (i, j) ∈ E considering the
existing flows in a network traversing link (i, j).

In constraints 7g and 7h, we define the access control
properties. Constraint 7g ensures that a flow f between a
subject s and an object o is only permitted if the function
lev(σo, σs), shown in (8), returns 1, indicating that the security
levels of s and o allow communication:

lev(σo, σs) =

1, if o is provider object and σo ≤ σs
1, if o is receiver object and σo ≥ σs
1, if o is both and σo = σs

0, otherwise
(8)

As defined in Section III-C for access control, we further
have to ensure that the subject s and object o have the
appropriate security categories before calculating a path. In
function cat(λco, λ

c
s) shown in (9), we model the requirement

of security categories to allow a flow between s and o:

cat(λco, λ
c
s) =

1− (λco − λco · λcs), if o is provider
1− (λcs − λcs · λco), if o is receiver
1− (λcs − λco) · (λcs − λco), if o is both
0, otherwise

(9)
To mathematically define this, we introduce variable λci which
indicates if a node i has a security category c, i.e., λci =
1, or not, i.e., λci = 0. As an example for the operation of
function cat(), suppose a subject s wants to communicate with
a provider object o. In order to permit the flow, the constraint
that Co ⊆ Cs must be satisfied. To evaluate if the security
categories Co of an object are a subset of the categories in
Cs, we introduce the formulation 1− (λco− λco · λcs) as shown
in (9). This will evaluate to 0 if subject s does not have a
security category c, but object o does, i.e., (1−(1−1 ·0)) = 0.
Such a case does not fulfill the access control constraint, and
therefore the flow cannot be admitted, i.e., αf = 0.

Function cat() works in a similar way if o is a receiver
object. In case o is both a provider and receiver, function
cat() evaluates to 1 if Co = Cs. As stated in constraint 7h,
the function cat() has to return 1 for all categories c ∈ C
for a flow f between a subject s(f) ∈ S and an object node
o(f) ∈ O. Additionally, in constraint 7i, we define the secure

Algorithm 1 PolicyCompliantPath(G,s,o,df)
1: V = nodes in G
2: for all v ∈ V do
3: dist[v] = infinity, prev[v] = null
4: end for
5: dist[s] = 0
6: N = nodes in G
7: if lev(σo, σs) = 1 and cat(λco, λ

c
s) = 1,∀λco ∈ Co, λcs ∈

Cs then
8: while N not empty do
9: i = node in N with smallest dist[]

10: remove i from N
11: for all adjacent node j of i do
12: if orig(σo, σs) ≤ σj and df ≤ κ̃ij then
13: distnew = dist[i] + 1
14: if distnew ≤ dist[j] then
15: dist[j] = distnew
16: prev[j] = i
17: end if
18: end if
19: end for
20: end while
21: end if
22: return prev

flow property to prevent information flow to lower classified
nodes. Thus, for each next node j on a link (i, j) of a flow
f , indicated by the decision variable xfij , the security class
of the originating node of flow f (i.e., the subject if the
object is a receiver, and the object otherwise) has to be less or
equal to the security class at the next node j on the path. We
define function orig(σo, σs) as shown in (10), where orig()
returns the security level depending on the type of object
node o, according to the defined flow control constraint in
Section III-C:

orig(σo, σs) =

{
σs, if o is receiver
σo, otherwise

(10)

This last constraint ensures that on a path between a
subject s and an object node o, no forwarding nodes with
a lower security level compared to the security level of the
originating node of the flow are visited. We then use the
specified constraints 7b-7i as the basis for our heuristic-based
maximization algorithm discussed in the next section.

B. Policy Compliant Flow Maximization Algorithm

The linear programming model introduced in Section IV-A
is a binary integer programming model, a special case of
integer linear programming (ILP) since all variables are binary.
Integer linear programming models are NP-hard problems in
general, and the special case of binary integer programming
is one of Karp’s 21 NP-complete problems [23]. Although
solvers such as Gurobi [24] are efficient in computing a so-
lution for such problems, binary integer programming models
can be impractical to solve for certain inputs.

6

To address this issue, we also formulate a heuristic algo-
rithm to compute a security compliant path between subjects
and objects based on a modification of Dijkstra’s shortest
path algorithm. In Algorithm 1, we extend Dijkstra’s algo-
rithm by enforcing the access control constraints, flow control
constraints, and the residual link capacities (similar to the
constraints presented in (7). Specifically, we formulate the
access control constraint in line 7 based on the introduced
functions lev() as defined in (8) and cat() as defined in
(9). To compute a secure path between s and o we define
the constraints in line 12 to only consider an adjacent node
j of a link if the security level of node j is greater or
equal the security level of the originating node of flow f
and the link connecting node i and j has enough residual
capacity to accommodate flow f . In effect, the introduced
model and algorithm will compute paths that accommodate
the maximum number of flows f ∈ F between a subject node
s and an object node o, with consideration for security and
link capacity. Moreover, a natural result of this strategy is
that the algorithm will tend to find similar paths for similar
level flows, thus further keeping flows isolated from dissimilar-
labeled switches.

C. Policy Conflict Minimization Model
Finding a path fulfilling all security conditions might not

always be possible considering the nature of real-world net-
works. In contrast to the previous model, here we assume
that all flows fulfilling the access control and link capacity
constraints must be accommodated in the network, which may
lead to policy conflicts. Policy conflicts are conditions where a
flow is visiting a node on a path that has a lower security level
than the transferred information (i.e., than the sender node),
and we quantify a policy conflict as the numerical difference
between those security levels. In this scenario, the network
administrator is assuming the risk of using insecure paths in
order to achieve 100% coverage of flows. Thus, while the
network is still subject to traffic analysis attacks even with
encrypted traffic, we suggest suggest here using encryption as
a minimal security measure over the data traversing the unsafe
links, if not already using encryption.

Considering the lattice in Section III-B, we assume that
nodes classified as Confidential (2) have a higher risk of being
compromised than nodes classified as Secret (3). The goal
here is to minimize policy conflicts; therefore, if information
classified as Top Secret (4) is transferred on a path with policy
conflicts, it is preferable to select nodes with the smallest
numerical difference (i.e., Secret (3) nodes are preferred over
Confidential (2) nodes).

Resolving policy conflicts requires additional security mea-
sures (e.g., declassification). The larger a policy conflict (i.e.,
higher numerical difference in security levels), the more an
additional security measure will cost, in terms of transmission
time or computation overhead. By minimizing the numerical
distance of policy conflicts, we aim to minimize the cost
required to apply additional security measures to meet a
defined security policy.

To achieve this, we compute a network configuration in
a two-step process. We first select a subset of the flows

4
2

4

3
3

3

s o

Fig. 3. An example network where path selection is done selectively based
on the security levels of nodes. Here, multiple potential paths exists, where
the best one is chosen for the flow based on the imposed policy conflict value.

Fl ⊆ F that fulfill the access control constraints, and second,
compute paths between subjects and objects with the objective
to minimize security policy conflicts. We define the access
control constraints as follows:

Fl ={f ∈ F : lev(σo, σs) = 1 and cat(λco, λ
c
s) = 1,

∀λco ∈ Co,∀λcs ∈ Cs, o ∈ O, s ∈ S}
(11)

Next, for the set of legitimate flows Fl, we also define an
objective function, conf, to find a network configuration that
accommodates all flows in Fl while minimizing the policy
conflicts on a path of a flow f ∈ Fl between a subject s
and an object o. The function returns the difference between
the security level of the flow’s originating node, given by
orig(σo, σs), and the security level σj of a node j on the
path between s and o if σj < orig(σo, σs). More formally:

conf(σo, σs, σj) =

{
orig(σo, σs)− σj , if σj < orig(σo, σs)

0, otherwise
(12)

We aim to minimize the policy conflicts caused by visited
nodes with lower security levels. Assuming a flow originates
from a node o, we define the severity of the policy conflict by
the numerical distance from level σo of node o to a node j with
level σj , if σj < σo. Then, choosing a node j over a node h,
where (σo−σj) < (σo−σh), is preferable. And for selecting a
secure path, we want to give preference to these nodes with a
smaller difference in security level with the originating node,
even if such a path is significantly longer than the shortest
path. To model this, we introduce a factor γ and define our
objective function as follows:

min
∑
f∈Fl

∑
i,j∈E

xfij · γ
conf(σo(f),σs(f),σj) (13)

In (13), xfij denotes the decision variable if link (i, j) is
selected as part of the path between s and o for a flow f .
In the objective function as shown in (13), σo(f) denotes the
security level of object node o of a flow f , σs(f) denotes the
security level of subject node s of a flow f . The security level
of a node j on the path between s and o is defined by σj . The
factor γ controls the length of a path that should be chosen as
a trade-off for visiting nodes with a smaller distance in terms
of security levels. We visualize this in an example shown in
Figure 3.

Considering this small network, two possible paths exist
between s and o. The numbers in the nodes indicate their
security level. If we select a factor γ = 4, the top path results
in a value of 44−2 = 16, while the bottom path has a smaller
policy conflict value of 3 · 44−3 = 12, and thus would be

7

selected. In contrast, if we select a smaller value for γ (e.g.,
γ = 2) then considering the top path, a transition from the
node with security level 4 to the node with security level 2
has to be made, resulting in a policy conflict value of 24−2 =
4. Computing the policy conflict value for the bottom path
would result in 3 · 24−3 = 6, since we have to visit three
nodes with a difference in the security level of 1. Based on
this, the top path would be selected, although from a security
perspective, the bottom path may be more preferable since
nodes with a smaller security level difference are visited. This
example shows that the factor γ controls the selection of longer
paths visiting nodes with a smaller security level difference. To
always select paths with the smallest security level difference,
γ can be set to the network diameter + 1, in terms of hop
count, which we prove as follows.

Lemma 1. To select a longer path with lower policy conflicts,
we must set γ to the maximum path length + 1.

Proof. Assuming a flow originating from an object o, we
have to show that for a path of flow f defined by a set of
links (i, j) ∈ E indicated by the decision variable xfij , the
value of policy conflicts specified as

∑
i,j∈E x

f
ij · γσo−σj and

assuming that ∀j, σj < σo, is larger for a path with higher
policy conflicts than a potentially longer path with a lower
conflict value if γ is chosen appropriately. Given a candidate
node for the path of flow f with a policy conflict of a, we
want to choose γ so that a potentially longer path y over a
set of nodes with a lower policy conflict of b is selected, i.e.,
γa > y · γb. Since a > b, we can express b as a− q, where q
is the numerical difference of the security levels of a and b,
i.e., q = a − b. By replacing b with a − q, we can write the
inequality above as γa · γq > y · γa. Assuming the smallest
absolute difference of two unequal security classes, i.e., q = 1,
the inequality above can be written as γ > y. Therefore, we
can say that in order to select a path that is y hops longer,
over a set of nodes with a lower policy conflict value, we have
to select a value for γ that is at least y + 1. This also holds
for larger security differences, since γq < γq+1 holds true for
positive values of q.

D. Policy Conflict Minimization Problem

To minimize the policy conflicts on a path, we formulate the
optimization problem as an integer linear programming (ILP)
model. We refer to this problem as the security policy conflict
minimization problem, as shown in (14).

To trigger a flow at a node s, 14b adds 1 to the decision
variable xfis. In our formulation to compute a path from s to
o, the flow is consumed at node o as stated in constraint 14c.
In 14d, we state the flow preservation constraint to ensure
that the sum of incoming flows to a node equals the sum of
outgoing flows. Constraint 14e ensures that the given capacity
κij of a link (i, j) ∈ E is not exceeded by forwarding flows
f ∈ Fl with a size of df per flow. In 14e, we assume that
the flow size df is chosen to include traffic between s and o
in both directions since we assume symmetric routes. Since
new flow demands typically arrive at different times in a
network, we can replace the above link capacity κij with the

residual capacity κ̃ij which states the remaining capacity on
a link (i, j) ∈ E considering the existing flows traversing link
(i, j). Accordingly, with the specified constraints 14b-14e, the
introduced model will compute a path for every flow f ∈ Fl
between a subject node s(f) and an object node o(f) with the
objective function as defined in 14a.

min
∑
f∈Fl

∑
i,j∈E

xfij · γ
conf(σo(f),σs(f),σj) (14a)

s.t.∑
i:(i,s)∈E

xfis + 1 =
∑

j:(s,j)∈E
xfsj , ∀f ∈ Fl (14b)

∑
j:(o,j)∈E

xfoj − 1 = 0, ∀f ∈ Fl (14c)

∑
i,j∈E

xfij =
∑
j,k∈E

xfjk, ∀f ∈ Fl (14d)

∑
f∈Fl

xfij · d
f ≤ κij , ∀(i, j) ∈ E (14e)

xfij ∈ {0, 1}, ∀(i, j) ∈ E, f ∈ Fl

E. Policy Conflict Minimization Algorithm

As discussed in Section IV-B, ILP models with binary
integer variables, such as (14), are typically NP-hard and can
be impractical to solve for certain input sequences. To address
this, we also propose a heuristic algorithm to approximate an
optimal solution and replace the objective to find the shortest
path with the objective to compute a path with the smallest
sum of policy conflict values (Algorithm 2, lines 12-13).

Since Algorithms 1 and 2 are based on Dijkstra’s shortest
path algorithm, we can express their time complexity as
O(|F | · (|E|+ |V |log|V |)) for a number of |F | flows.

F. Resolving Policy Conflicts

As we’ve shown in the previous section, paths with suffi-
cient security levels and capacity may not always exist for two
nodes permitted to communicate. In such a case, additional
security mechanisms must be applied on the flow in order to be
policy compliant. These mechanisms typically involve a cost
to implement (e.g., increased transmission delay, processing
time, or capacity), which the latter model aims to minimize.

An important mechanism for resolving policy conflicts is
declassification, which is the process of lowering the security
level of the information. Sabelfeld et al. [25] discuss a general
framework for declassification by defining the dimensions of
information release, including: what information is released,
who releases the information, where information is released,
and when it is released. By analyzing these dimensions, a
network operator is then able to evaluate the risks and benefits
of declassification to resolve certain security policy conflicts.
In our framework, declassification can involve lowering a
flow’s security level so it can traverse a path with lower
classified nodes than the originating node. Methods to achieve
this include traffic camouflaging techniques [26] or VPNs to
defend against traffic analysis.

Resolving policy conflicts can also be achieved by the NSO
relabeling certain nodes in the network (e.g., increasing the
security level of forwarding nodes) after upgrading the security

8

Algorithm 2 MinConflictPath(G,s,o,df)
1: V = nodes in G
2: for all v ∈ V do
3: conf [v] = infinity, prev[v] = null
4: end for
5: conf [s] = 0, N = nodes in G
6: if lev(σo, σs) = 1 and cat(λco, λ

c
s) = 1,∀λco ∈ Co, λcs ∈

Cs then
7: while N not empty do
8: i = node in N with smallest conf []
9: remove i from N

10: for all adjacent node j of i do
11: if df ≤ κ̃ij then
12: confnew = conf [j] + γconf(σo,σs,σj)

13: if confnew ≤ conf [j] then
14: conf [j] = confnew
15: prev[j] = i
16: end if
17: end if
18: end for
19: end while
20: end if
21: return prev

measures on a switch and re-evaluating its security level. Our
proposed optimization model to minimize policy conflicts will
point out exactly which components of the network topology
are causing conflicts; therefore, relabeling of nodes can be a
permanent solution to policy conflicts which may reoccur.

V. SECURE FLOW RULE CONSTRUCTION

To realize a policy compliant network configuration, in the
following we define a set of principles for the construction of
secure flow rules which preserve confidentiality.

A. Isolating Flows

Attacks that exploit the composition of flow rules are
effective because the matching criteria often only identifies
packets by a limited set of header fields, as discussed by
Achleitner et al. [14]. If the flow rules are only matching
packets against header fields of a certain network layer (e.g., IP
addresses), then the information in other layers will be seen as
“wild cards” and thus will be ignored. This problem motivates
the construction of SDN flow rules with consideration of
information spanning all network layers.

The OpenFlow protocol [21] defines a set of matching fields
supporting different network layers. Multiple endpoints may
share lower layer fields such as physical ingress port; thus,
to differentiate them and identify their security levels, we
must include fields from higher network layers (e.g., IP or
Ethernet addresses). But security leaks caused by the exchange
of certain packet types in SDN-enabled networks [9], [11],
[14] motivate the use of categories in a security lattice to offer
finer granularity of information exchange in SDN flow rules.
Therefore, we derive these categories from additional packet
header fields which may span all layers of the network stack

Algorithm 3 GenerateFlowRule(R,A,P ,next)
1: rule.append(”match : ”)
2: for all r ∈ R do
3: if r ∈ P then
4: rule.append(r = P (r))
5: end if
6: end for
7: rule.append(”action : ”)
8: if next != drop then
9: for all a ∈ A do

10: rule.append(a)
11: end for
12: rule.append(”next”)
13: else
14: rule.append(”drop”)
15: end if
16: return rule

(e.g., ARP , IP , TCP , UDP and ICMP), and use them in
enforcing the security policy.

Additionally, with this general framework, a security cate-
gory can be defined with even finer granularity. For example,
by specifying field subtypes: ICMP type 8 code 0, to allow
ping packets. Thus, the various header fields allow greater
flexibility when defining the security policy, and unlike tra-
ditional networks, the policy can be efficiently managed by
sending flow mod messages to the forwarding nodes to update
their routing tables.

B. Constructing Secure Flow Rules

In SDN-enabled networks, we must consider the assigned
security labels during the construction of flow rules at the
controller. As described previously, security leaks can arise
with imprecise matching criteria. Considering this, we must
construct precise flow rules which ensure that only packets
fulfilling the defined security level and category constraints can
be transmitted. We extend the general method for generating
rules to accomplish this. More formally, given a security label
of a flow, for secure rule construction, we represent the set of
supported fields in the security label for network layer Ni ∈
N , where N is the set of all network layers, as RNi. Then,
the superset of fields to be matched against some packet P
during secure rule construction can be realized by taking the
union of sets, which we denote as R:

R =
⋃

Ni∈N :∀Ni≤NP

RNi
(15)

This formulation ensures that—after satisfying access control
constraints—a flow is isolated and handled correctly according
to its security categories (i.e., packet fields).

Besides matching criteria, OpenFlow also defines action
sets, specifying what actions to apply on matched packets.
These include a required action part (e.g., forwarding or
dropping) and optional actions (e.g., rewriting packet header
fields). We denote the required action part as next, which
specifies to either send a packet to a specific output port or to

9

TABLE III
FLOW MAXIMIZATION BENCHMARK.

AS network k=8 k=12 k=16
Lattice Levels 2 lev. 3 lev. 4 lev. 2 lev. 3 lev. 4 lev. 2 lev. 3 lev. 4 lev. 2 lev. 3 lev. 4 lev.

LP (no congestion) 85% 75% 65.7% 79.5% 64.6% 58.3% 79.5% 66.6% 59% 81% 68.4% 64%
HA (no congestion) 79.6% 71% 63.1% 63% 52% 50.6% 66.5% 57% 51.1% 68.5% 61.1% 53%
LP (cong. network) 53.4% 45.2% 37.4% 45.5% 39.3% 34.3% 56% 46.5% 36.5% 56% 50.6% 36.5%
HA (cong. network) 51.9% 41.8% 35.8% 44.5% 33.5% 31.9% 50% 38% 32.3% 52.3% 45.8% 34.5%

TABLE IV
POLICY CONFLICT MINIMIZATION BENCHMARK.

AS network k=8 k=12 k=16
Lattice Levels 2 lev. 3 lev. 4 lev. 2 lev. 3 lev. 4 lev. 2 lev. 3 lev. 4 lev. 2 lev. 3 lev. 4 lev.
LP no conflict 85% 75% 65.7% 79.5% 64.6% 58.3% 79.5% 66.6% 59% 81% 68.4% 64%

1 lev. diff. 15% 21.5% 29.3% 20.5% 24.6% 24% 20.5% 26% 28.5% 19% 22% 20%
2 lev. diff. - 3.5% 4.3% - 10.8% 12.7% - 7.4% 10% - 9.6% 11%
3 lev. diff. - - 0.7% - - 5% - - 2.5% - - 5%

HA no conflict 79.6% 71% 63.1% 63% 52% 50.6% 66.5% 57% 51.1% 68.5% 61.1% 53%
1 lev. diff. 20.4% 21.5% 24.6% 37% 25.7% 22.1% 33.5% 29% 27.5% 31.5% 23.2% 23%
2 lev. diff. - 7.5% 6.6% - 22.3% 22.6% - 14% 14.7% - 15.7% 14%
3 lev. diff. - - 5.7% - - 4.7% - - 6.7% - - 10%

drop it. Similarly, we specify the set of optional actions, such
as rewriting addresses, as the action set A.

Based on sets R and A for a packet P , we formulate Algo-
rithm 3. We begin rule construction by defining the matching
part of a flow rule in line 1. We continue to iterate through
the set of matching fields in R, as defined in Equation 15, and
check in line 3 if a specified field r can be applied to a value
in packet P . If this evaluates to true, we add the matching
field r and its associated value P (r) to the flow rule in line 4.
In line 7, we add the action part of a flow rule and check in
line 8 if the action is to drop the packet. In case we specify
a rule to drop packets with specific protocol types, we must
ensure the priority of that rule is higher than other rules for
the flow that allow forwarding for other protocol types (i.e.,
allowing most IP traffic, but disallowing any UDP over IP).

To resolve flow rule conflicts between rule actions, we refer
to existing frameworks such as Porras et al. [12]. However,
we note that MLSNet inherently generates a conflict-free
set of flow rules (per the guarantees offered by MLS), and
our contributions are not focused on methods for conflict
resolution. Nonetheless, if the packet is forwarded, then the
set of action fields and the output port are added to the rule,
as shown in lines 10 and 12. With this construction, we can
properly generate a secure flow rule configuration and isolate
the flows to ensure that confidentiality of information flow is
preserved in the network.

VI. EVALUATION

With an MLS policy, adversarial capabilities (in terms of
probing, eavesdropping, and lateral movement) are by def-
inition restricted to only that allowed by policy. Here, we
still want to be able to route all legitimate flows. In the
following, we demonstrate that (in comparison to not enforcing
a security policy) a network administrator can still provide

strong coverage of network flows. The goal of our approach is
to achieve this, while also reducing the security cost associated
with guaranteeing all flows be routed.

We perform a simulation-based analysis for both fat-tree and
extended-star topologies, which are representative of datacen-
ter and enterprise networks 3. In Table III, we report on the
performance of our framework to find policy compliant paths
for flows in various topologies and with lattices of different
sizes. In Table IV, we report MLSNet’s performance when
minimizing the policy conflicts, where accommodating the
remaining flows may require routing along paths containing
nodes with a lower security-level than required. We further
show MLSNet’s ability to mitigate common attacks (see
Section II-B), such as those executed by the recently proposed
reconnaissance tool SDNMap [27], [14].

A. Flow Maximization Benchmark

To evaluate the ability of our framework to maximize
the number of policy compliant flows and minimize policy
conflicts on paths, we test the introduced linear program-
ming (LP) models and heuristic algorithms (HA) on different
network topologies. We first consider a realistic autonomous
system (AS) network, which is an extended-star topology.
Then, to model common data-center and cloud topologies, we
consider different k-ary fat-tree networks [28], where k is the
port density of each switch in the network (e.g., 8, 12, and
16 ports). We consider lattices of 2-4 security levels which
are evenly distributed and randomly assigned to the nodes

3Note that simply moving sources and sinks to achieve better coverage of
flows requires manual relocation of devices, which is impractical for large
networks. With MLSNet, we have flexibility in that a network administrator
can achieve the same effect through logical security labels and flow rules; if
the topology or node levels change, no manual relocation is needed as the
changes can be reflected transparently through new flow rules.

10

in a network. To generate flows, we randomly pick source
and destination node pairs which fulfill the access control
constraint and compute paths with our linear program models
and heuristic algorithms. Further, we consider networks with
different link capacities to simulate congestion. Our results for
flow maximization and policy conflict minimization (for the
remaining flows) are averaged over several runs and shown in
Tables III and IV.

We explore the number of flows able to be routed in the
AS3257 Rocketfuel [29] topology (161 nodes, 656 links), as
well as 8-ary (208 nodes, 384 links), 12-ary (612 nodes, 1296
links), and 16-ary (1344 nodes, 3072 links) fat-tree networks.
For flow maximization, shown in Table III, our framework
shows that a majority of flows was always routed securely.
For the ASN topology, the number of flows routed by the LP
reached a peak of 85% coverage, while the heuristic algorithm
reached a peak of 79.6% coverage (i.e., 94% of the optimal).
For the remaining three topologies, the heuristic was slightly
less performant. We also observed, for any of the topologies,
that the number of flows routed securely decreases as the
number of security levels increases (from left to right in any
row). However, even at 4 security levels (common in military
networks), a majority of flows was routed securely in the
noncongested network. Certainly, congestion dynamics, node
labels, and different traffic types vary with different networks
and will affect the number of flows able to be routed, although
this situation can be remedied with conflict minimization.
Nonetheless, the results demonstrate that the framework is
feasible in several network topologies of different sizes.

In the case of congested networks, we observed for the ASN
topology that the heuristic is able to achieve 97.2% of the
optimal coverage, with quantitatively similar results for the
fat-tree topologies. We note that despite the low flow coverage
(∼ 50%) because new flows could not be supported by the
links at some specific time, rules may still have a scheduled
install at a delayed time (i.e., when the links can support the
new flows), so permitted flows do not necessarily have to be
discarded.

The key insight here is that the heuristics are effective,
achieving on average 89% of the optimal coverage across all
experiments. Moreover, in real data-center or cloud networks,
edge switches may carry similar traffic [30] and thus have
similar security levels and only be limited by the available
capacity (i.e., not the security levels). These results show that
even in the worst case of random level assignment—where for
example higher-level nodes may be surrounded by lower-level
ones and thus cannot communicate without a policy conflict—
paths (even if longer) can be found for a majority of flows.

B. Flow Minimization Benchmark

We then evaluate our model’s ability to route the remaining
flows (in the noncongested case) to guarantee availability.
Table IV shows that all flows can be routed with minimal
policy conflict along the allowed path. We define policy
conflicts as the scenario where a node is visited on a flow path
that has a lower security level than the transferred information
(i.e., the originating node), and quantify it as the difference of

10 250 500 750 1000
Number of flows

0

250

500

750

1000

1250

1500

1750

2000

Ex
ec

 ti
m

e
(s

)

k8_ilp_max
k10_ilp_max
asn_ilp_max
k8_greedy_max
k10_greedy_max
asn_greedy_max

10 250 500 750 1000
Number of flows

0

500

1000

1500

2000

2500

3000

3500

Ex
ec

 ti
m

e
(s

)

k8_ilp_min
k10_ilp_min
asn_ilp_min
k8_greedy_min
k10_greedy_min
asn_greedy_min

Fig. 4. Execution time for flow maximization (top) and conflict minimization
(bottom) benchmarks. The execution time for the ILP solver Gurobi has a
power law relationship with the number of flows, while the heuristic (greedy)
algorithms scale more efficiently.

the security levels. Minimizing the conflicts also minimizes
the additional security measures needed to protect the flows
traversing unsafe links (e.g., via stronger encryption).

For the AS network, paths with no conflict can be found
for the majority of flows, while most of the remaining flows
only impose a conflict of one security level difference. Less
than 5% of flows must be routed through even less secure
paths in order to guarantee availability. The case is similar
for the fat-tree networks; the majority of flow paths have no
conflict, approximately 20− 30% of flows can be routed with
minimal policy conflict of one level, while feasible paths for
the remaining flows can also be found, fitting as many flows
along two-level difference paths, and so forth.

The key insight here is that most of the remaining flows
were able to be routed with a conflict of one security level
difference, and the heuristic algorithms are effective, approx-
imating the optimal solution by 87% on average across all
experiments. This leaves many questions for future work,
where it may be possible to identify whether or not this single-
level conflict occurs at hot (or commonly used) nodes, and

11

whether that information can be used to relabel nodes (and
perhaps repurpose them) or physically reconfigure the network
to reduce possible conflicts to a minimum, for any set of flows.

C. Running time

We observed that the execution time of computing secure
paths is strongly correlated with the number of switches in the
network, scaling with a power law. As shown in Fig. 4, we
observed that the LP solver Gurobi [24] generally requires
>3 minutes to compute secure paths and >10 minutes to
compute minimal conflict paths when there are 500 flows
in the network, which is impractical in real networks. On
the other hand, the greedy heuristic algorithms (in a Python-
based implementation) require on average 8.7 seconds and
8.1 seconds, respectively, even when k = 10 (with 250 hosts
and 125 switches), while smaller networks (e.g., k = 8) only
require on average 2.7 seconds and 1.5 seconds to compute
paths and thus scales more effectively.

However, large datacenters may have thousands of
nodes [28] and/or flows, and even mid-sized datacenters may
contain several hundred nodes. In these scenarios, solving the
optimization with Gurobi can take on the order of several
minutes or hours, while the greedy algorithms still may require
several minutes. Therefore, the greedy algorithms can compute
paths for individual flows in smaller networks. However, in
larger networks, the speed of MLSNet can be further improved
by buffering precomputed paths, implementation on hardware,
or clustering flows before computing paths4.

D. Defending Against Attacks

We then implement the network scenario shown in Figure 5
with the SDN simulator Mininet [32], assigning security labels
to the nodes and configuring the network to use our framework
MLSNet. Here, we use SDNMap [27] to demonstrate that our
framework can mitigate the attack techniques discussed in
Section II-B. SDNMap operates by iteratively probing network
nodes with crafted packets and eavesdropping on reply mes-
sages from all endpoints in the network to reconstruct flow
rules (by identifying active hosts and supported protocols).
The gathered information is then used to exploit flow rules
and bypass security measures such as access-control lists.

Here, we use the security lattice from Figure 2 to config-
ure the network. Running the MLSNet system at the SDN
controller, we assign the security classification of Public -
[ARP,IP,TCP] to the adversary node at 10.0.0.1 (who is using
SDNMap). We then let the adversary begin sending probes
into the network. The switch default action for an unknown
flow is to send it to the controller for inspection and flow rule
generation. On receipt of a new flow, the controller will verify
the access control constraint of the communicating parties and
the flow control constraint of nodes along a potential flow path.

4Note that by clustering flows and generating rules by, e.g., subnets,
MLSNet can create secure paths between subnets (i.e., for flows that enter or
leave similar gateways), instead of generating rules for individual flows. This
may be useful when flow tables have limited size (e.g., in modern hardware
switches [31]). We leave development of such a system to future work.

Public
Webserver

10.0.0.5

Confidential
Database
10.0.0.6

Administrator
10.0.0.4

Public wifi
10.0.0.0/30

AB
C

D

Provider Object
[Public]

[ARP,IP,TCP]

Provider & Receiver Object
[Secret]

[ARP,ICMP,IP,TCP,UDP]

[Public]

Subject - [Secret]
[ARP,ICMP,IP,TCP,UDP]

[Secret]

[Secret]

[Secret]

Malicious host
10.0.0.1

Fig. 5. Experimental network setup with assigned security labels. Using the
SDNMap scanner, the (Public) adversary was only able to identify the other
Public node in the network, where MLSNet prevented any higher-level traffic
from ever reaching them, thus limiting their ability to reconstruct flow rules.

A secure flow rule that obeys the security policy will then be
generated.

Mitigating lateral movement. MLSNet ensures that a node
with this classification cannot receive packets from nodes
with a higher classification (e.g., from the node at 10.0.0.4
labeled Secret - [ARP,ICMP,IP,TCP,UDP]). Therefore, all of
the probes destined from the attacker toward a node of higher
level should be blocked at the controller, and any induced
responses (e.g., from ARP) should also be blocked from
flowing back toward the attacker, with no flow rules being
generated. We observed exactly this behavior after scanning
the network’s IP space. As shown in the SDNMap output
in the Appendix, the attacker sent out a series of probes
enumerating the packet fields (e.g., IP addresses and protocols)
to identify active hosts and supported protocols. However,
all of the probes sent toward nodes of higher classification
were blocked by the controller for not satisfying the access
control constraint. Here, SDNMap reported (highlighted in the
boxed text) that only the node with IP address 10.0.0.5 replied
(the other public host). Although present in the network, the
remaining hosts, 10.0.0.4 and 10.0.0.6, were not discovered.

Further, any induced responses over different protocols such
as UDP or ICMP were blocked at the controller for not
satisfying the flow control constraint as well. Therefore, the
attacker discovered that there was a host at 10.0.0.5 that was
reachable via TCP (highlighted in boxed text), but none of the
other hosts nor protocols supported by them, as the adversary
was limited to scanning public nodes over ARP, IP, or TCP.
As a result, the adversary was able to reconstruct flow rules
for the host at 10.0.0.5. Indeed, future work may investigate
optimal labeling and relabeling strategies that can respond to
the current network traffic profile in order to dynamically
reinforce least-privilege across label categories and further
reduce the threat surface.

Mitigating packet spoofing. For the same reasons the
adversary could not receive response messages to concretely
identify nodes of different security labels, MLSNet mitigates
the threat of packet spoofing with respect to data exfiltration.
Adversaries impersonating nodes of higher security labels and
attempting to exfiltrate data to lower-security (i.e., Public,
or untrusted nodes) must inevitably traverse a lower-security
switch or be destined for a lower-security endpoint. Thus, even
if an adversary found a way to identify those active nodes,

12

unless the adversary compromises every lower-security node
along a flow path, at least one of them will block the flow
per the MLSNet policy, effectively preventing the exfiltration.
Moreover, MLSNet simply rejects the deployment of a flow
rule for an unrecognized (i.e., spoofed) source node.

Mitigating eavesdropping. MLSNet also prevents eaves-
dropping on communication between nodes of higher-
classification by careful construction of flow rules. Since the
controller rejects flow rules that direct higher-level traffic
toward Public nodes from being generated, the attacker was
unable to eavesdrop any traffic passing between the Secret
and Confidential nodes at 10.0.0.4 and 10.0.0.6, including
broadcast traffic from either node. As a result, MLSNet was
able to minimize the ability of the attacker to reconstruct flow
rules, which may have been the first phase of a potentially
much larger attack.

VII. RELATED WORK

A. Confidentiality in Networks

Historically, networks have enforced security policies (i.e.,
information flow) through firewall and routing configuration.
However, these mechanisms are often very coarse and prone
to ambiguity, errors, and require coordination across many
devices [33], [34], [3]. Indeed, failures due to errors have
enabled a variety of attacks to be launched against real-world
networks, including device impersonation, man-in-the-middle,
performance degradation and denial-of-service [35], [36], [37],
[38], among others. Typically these attacks manifest from a
small set of techniques: packet spoofing, lateral movement,
and eavesdropping, which have been well-known problems
since the 90s [39] and have become increasingly important as
more information is being put online [40]. In fact, recent work
has already demonstrated the ability of an adversary to freely
probe within the network to recover sensitive information [9],
[10], [11], [12], [13], including active network hosts and even
switch flow table rules in software-defined networks [14].

Over time, there have been many defense methods pro-
posed against these techniques, including: source validation to
prevent or mitigate packet spoofing [18], [19], firewalling to
enforce access policies at network boundaries [3], encryption
to prevent unauthorized parties from intelligibly interpreting
sniffed data, among others. While each useful in a variety
of scenarios, they target specific attack techniques and only
partially address the problem of confidentiality—ensuring that
only authorized entities have access to some data. Further,
while we can accomplish many of the same security goals with
a rule-based approach (i.e., per-node, on-demand whitelisting
or blacklisting) the inherent problem extends beyond the
endpoints to entire route throughout the network (i.e., the
switches). Then, network administrators must configure and
manage what will quickly become a complex and conflicting
set of rules, as demonstrated already to be a problem with
firewalls [3]. This motivates our work for developing a solution
that exploits multilevel security to provide provable guarantees
about who in the network may access what data.

B. Multilevel Security in Networks

Multilevel security allows a network administrator to specify
an hierarchical access control policy of a set of subjects on a
set of objects. With labels (i.e., a level and categories) given
to each subject and object, the policy is enforced through
access and flow-control constraints. In fact, multilevel security
already plays a critical role in controlling access to information
for both military personnel and employees of commercial
businesses with different levels of clearance [5]. Common
use cases include controlling file access in an operating
system [6], object access in generic storage systems [41], table
access in a relational database [7], as well as a primitive for
securing information flow between variables in programming
languages [42].

The notion of multilevel security can also be applied to
computer networks, where the MLS policy dictates which
nodes are allowed to communicate, what type of traffic they
may exchange, and what paths the flows may take in the
network. This property precisely address the concerns about
confidentiality. We draw inspiration for our framework from
the seminal work by Lu et al. [8] and apply it to SDN-enabled
networks. In their work, they introduce a model for multilevel
security (MLS) in computer networks by defining a Trusted
Network Base (TNB) that is similar to a Trusted Computing
Base (TCB) in single-computer systems. The proposed model
defines a set of entities (e.g., terminals or printers) and users
of the network and relies on the implementation of a security
policy by the network endpoints. This approach becomes
impractical when having to deploy it on every node in the
network, and we exploit the centralization of software-defined
networking (SDN) [43] to provide this service transparently
to the entire network.

C. Deploying and Verifying Network Policies

There is also a related body of work in leveraging SDNs
to deploy network policies that offer other desirable proper-
ties, including reachability, loop-free forwarding, and isolation
guarantees, among others. Kazemian et. al [44] introduced
NetPlumber, a verification tool that builds on header-space
analysis [45] to incrementally verify updates to network state.
Here, header-space analysis provides a formal model of packet
processing in the network (i.e., how packets are forwarded,
rewritten, encapsulated, etc.), allowing the verification engine
to check the current flow-rule configuration against target
invariants. This work differs from MLSNet in that it focuses
on validating a given set of invariants in response to events
that trigger network updates (i.e., new flow rule being installed
by the controller). MLSNet focuses on constructing a set of
rules that inherently adhere to the security policy (i.e., satisfy
the security invariants), and furthermore, focuses specifically
on access-control invariants. Although, the invariants (security
constraints) and flow rules of MLSNet can be plugged into
NetPlumber to verify network updates against both the MLS
policies and other types of network policies.

Other works introduce similar graph-based models of the
network and forwarding functionality to identify conflicting

13

actions among network policies generated by SDN appli-
cations [46], [47], [48] (e.g., different flow rules enforcing
conflicting actions against a host). They introduce abstractions
for specifying policies over network endpoints, providing a
natural way to merge the policies into a conflict-free set. As
above, MLSNet differs in that it uses the established guaran-
tees of multilevel security to construct an inherently conflict-
free set of flow-rules for the switches at runtime. Moreover,
MLSNet extends the security invariants to switches in addition
to network endpoints. Although, the security invariants of
MLSNet can again be verified by these systems alongside
other types of network policies.

D. Trustworthiness of Nodes in Networked Environments

An important requirement to configure a network based
on a defined multilevel security policy is the determination
of trusted nodes in a network, and formulating a security
lattice based on different levels of trust. Recently published
papers [49], [50], [51] point out methods to determine trust-
worthiness of nodes in networked environments.

Jiang et. al [49] discuss the data collection process with
unmanned aerial vehicles (UAV) in a large-scale internet of
things deployment. A major problem in such systems are com-
promised nodes which results in a declined network lifetime
and delivery of unreliable and corrupted data. To address this
problem, the authors propose a mechanism to evaluate the
quality and trustworthiness of the collected data by UAVs from
a wireless sensor network (WSN).

Security issues of data collection in Smart Internet of Things
(SIoTs) networks are further discussed by Li et al. [50]. In their
paper, vehicles are considered as a data collection mechanism
in SIoTs to deliver information from sensors to a data center
(DC). In the discussed scenario, malicious vehicles can lead
to data loss which has a negative impact on the security of
the data collection process. The aim of their proposed work
is to improve the security of the data collection process by
selecting trusted vehicles for the data collection process.

Similarly, Ren et al. [51] discuss the security challenges of
efficient data collection in a Peer-to-Peer (P2P) network. In
such scenarios, collecting data from nodes faces the challenge
of unknown trustworthiness of a data collector before a certain
cost is paid to collect and verify the data. The proposed
solution considers a machine learning system that predicts
the trust value of a data reporter based on collected historical
information.

VIII. CONCLUSION

In this paper, we propose MLSNet, a framework which can
efficiently enforce an MLS policy by generating secure flow-
rule configurations. Built upon access control and flow control
constraints, we develop models and heuristic algorithms to
compute policy compliant configurations according to two
goals: satisfying a strict flow policy and a soft policy. For
the deployment of a policy compliant network configuration,
we define principles for secure flow rule construction. We
then demonstrate that our framework can deploy network
configurations able to withstand recently identified attacks on

SDNs. We hope this framework will serve as a base for further
investigation into defenses which protect the network with a
broader scope than specific attacks and efficient mechanisms
for resolving policy conflicts in real-time (perhaps, using
advances such as P4 [52] to implement rich SDN features
on the switches).

APPENDIX

14

SDNMap output:
1: SDNMap/python main.py 10.0.0.0/29 TCP
h1-eth0 []
2: Sending ARP request to 10.0.0.0
3: ...
4: Sending ARP request to 10.0.0.7
5: 10.0.0.1 / 00:00:00:00:00:01 received
response from the following hosts:
6 : 10.0.0.5 / 00:00:00:00:00:05
7: ----------------------------
8: Use 10.0.0.5 / 00:00:00:00:00:05 for
probing
9: --- Determine enforced protocols ---
10: ------- Check with TCP --------
11: Check if host at 10.0.0.5 -
00:00:00:00:00:05 is reachable with src
addresses 10.0.0.1 - 00:00:00:00:00:01
with TCP on src port 64836 and dst port
36748
12 : Host is reachable via TCP!
13: ------------------------------
14: ------- Check with ICMP -------
15: Check if host at 10.0.0.5 -
00:00:00:00:00:05 is reachable with src
addresses 10.0.0.1 - 00:00:00:00:00:01
with ICMP
16: ------------------------------
17: ------- Check with UDP --------
18: Check if host at 10.0.0.5 -
00:00:00:00:00:05 is reachable with src
addresses 10.0.0.1 - 00:00:00:00:00:01
with UDP on src port 64836 and dst port
36748
19: ------------------------------
20 : Accepted protocols :
21: TCP
22: --- Determine which L2/L3 fields are
enforced using TCP ---
23: ------- Check if layer 3 routing is
used --------
24: Check if host at 10.0.0.5 -
00:00:00:00:00:05 is reachable with src
addresses 10.0.0.205 - 00:00:00:00:00:01
from port 64836 to port 36748
25: Spoof ARP cache at 10.0.0.5 from
10.0.0.205 to 00:00:00:00:00:01
26: Check if host at 10.0.0.5 -
00:00:00:00:00:05 is reachable from
10.0.0.205 - 00:00:00:00:00:01 from port
64836 to port 36748
27: ------------------------------
28: ------- Check if layer 2 routing is
used --------
29: Check if host at 10.0.0.5 -
00:00:00:00:00:05 is reachable with src
addresses 10.0.0.1 - 00:00:00:25:12:b2
from port 64836 to port 36748
30: Spoof ARP cache at 10.0.0.5 from

10.0.0.1 to 00:00:00:25:12:b2
31: Check if host at 10.0.0.5 -
00:00:00:00:00:05 is reachable from
10.0.0.1 - 00:00:00:00:00:01 from port
64836 to port 36748
32: Spoof ARP cache at 10.0.0.5 from
10.0.0.1 to 00:00:00:00:00:01
33: ------------------------------
34:
35 : ------- Reconstructed rules ---------
36: match=type:tcp,dl_src:00:00:00:00:00:01,
dl_dst:00:00:00:00:00:05,
tp_src:64836,tp_dst:36748,
nw_src:10.0.0.1, nw_dst:10.0.0.5
actions=output:#OUT_PORT
37: match=type:tcp,dl_src:00:00:00:00:00:05,
dl_dst:00:00:00:00:00:01,
tp_src:36748, tp_dst:64836,
nw_src:10.0.0.5,nw_dst:10.0.0.1
actions=output:#OUT_PORT
38: ------------------------------

15

REFERENCES

[1] J. Jang-Jaccard and S. Nepal, “A survey of emerging threats in cyber-
security,” Journal of Computer and System Sciences, vol. 80, no. 5, pp.
973–993, 2014.

[2] D. E. Denning, “A lattice model of secure information flow,” Commu-
nications of the ACM, 1976.

[3] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and P. Mohapatra,
“Fireman: A toolkit for firewall modeling and analysis,” in 2006 IEEE
Symposium on Security and Privacy (S&P’06). IEEE, 2006, pp. 15–pp.

[4] L. Spitzner, “Honeypots: Catching the insider threat,” in 19th Annual
Computer Security Applications Conference, 2003. Proceedings. IEEE,
2003, pp. 170–179.

[5] O. S. Saydjari, “Multilevel security: reprise,” IEEE security & privacy,
vol. 2, no. 5, pp. 64–67, 2004.

[6] P. Loscocco, “Security-enhanced linux,” Linux 2.5 Kernel Summit, San
Jose (Ca) USA, 2001.

[7] X. Qian and T. F. Lunt, “A semantic framework of the multilevel
secure relational model,” IEEE Transactions on Knowledge and Data
Engineering, vol. 9, no. 2, pp. 292–301, 1997.

[8] W.-P. Lu and M. K. Sundareshan, “A model for multilevel security
in computer networks,” IEEE Transactions on Software Engineering,
vol. 16, no. 6, pp. 647–659, 1990.

[9] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility in
software-defined networks: New attacks and countermeasures.” in NDSS,
2015.

[10] C. Yoon, S. Lee, H. Kang, T. Park, S. Shin, V. Yegneswaran, P. Porras,
and G. Gu, “Flow wars: Systemizing the attack surface and defenses
in software-defined networks,” IEEE/ACM Transactions on Networking
(TON), vol. 25, no. 6, pp. 3514–3530, 2017.

[11] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “Sphinx: Detecting
security attacks in software-defined networks.” in NDSS, 2015.

[12] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A
security enforcement kernel for openflow networks,” in HotSDN. ACM,
2012.

[13] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “Flowguard: building robust
firewalls for software-defined networks,” in HotSDN. ACM, 2014.

[14] S. Achleitner, T. La Porta, T. Jaeger, and P. McDaniel, “Adversarial
network forensics in software defined networking,” in Proceedings of
the 2017 ACM Symposium on SDN Research, 2017.

[15] W. Dawoud, I. Takouna, and C. Meinel, “Infrastructure as a service
security: Challenges and solutions,” in 2010 the 7th International
Conference on Informatics and Systems (INFOS). IEEE, 2010.

[16] C. Tankard, “Advanced persistent threats and how to monitor and deter
them,” Network security, vol. 2011, no. 8, pp. 16–19, 2011.

[17] M. Antikainen, T. Aura, and M. Särelä, “Spook in your network:
Attacking an sdn with a compromised openflow switch,” in Nordic
Conference on Secure IT Systems. Springer, 2014, pp. 229–244.

[18] D. Senie and P. Ferguson, “Network ingress filtering: Defeating denial
of service attacks which employ ip source address spoofing,” Network,
1998.

[19] L. Savu, “Cloud computing: Deployment models, delivery models, risks
and research challenges,” in 2011 International Conference on Computer
and Management (CAMAN). IEEE, 2011, pp. 1–4.

[20] S. Feghhi and D. J. Leith, “A web traffic analysis attack using only
timing information,” IEEE Transactions on Information Forensics and
Security, vol. 11, no. 8, pp. 1747–1759, 2016.

[21] “Openflow protocol,” https://www.opennetworking.org/sdn-resources/
openflow, accessed: 2015-11-10.

[22] D. E. Bell and L. J. LaPadula, “Secure computer system: Unified
exposition and Multics interpretation,” Tech. Rep. ESD-TR-75-306,
1976.

[23] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of computer computations. Springer, 1972.

[24] “Gurobi,” http://gurobi.com.
[25] A. Sabelfeld and D. Sands, “Declassification: Dimensions and princi-

ples,” Journal of Computer Security, 2009.
[26] X. Cai, R. Nithyanand, and R. Johnson, “Cs-buflo: A congestion

sensitive website fingerprinting defense,” in Proceedings of the 13th
Workshop on Privacy in the Electronic Society. ACM, 2014.

[27] “Sdnmap open source tool,” https://github.com/SDNMap.
[28] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data

center network architecture,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 38, no. 4. ACM, 2008, pp. 63–74.

[29] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topologies
with rocketfuel,” ACM SIGCOMM Computer Communication Review,
2002.

[30] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. ACM, 2010, pp. 267–280.

[31] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore, “Oflops:
An open framework for openflow switch evaluation,” in International
Conference on Passive and Active Network Measurement. Springer,
2012, pp. 85–95.

[32] “Mininet - realistic virtual sdn network emulator,” http://mininet.org/,
accessed: 2017-11-06.

[33] L. Bauer, S. Garriss, and M. K. Reiter, “Detecting and resolving
policy misconfigurations in access-control systems,” ACM Trans.
Inf. Syst. Secur., vol. 14, no. 1, Jun. 2011. [Online]. Available:
https://doi.org/10.1145/1952982.1952984

[34] A. Wool, “A quantitative study of firewall configuration errors,” Com-
puter, vol. 37, no. 6, pp. 62–67, 2004.

[35] M. Conti, N. Dragoni, and V. Lesyk, “A survey of man in the middle
attacks,” IEEE Communications Surveys & Tutorials, 2016.

[36] O. Osanaiye, K.-K. R. Choo, and M. Dlodlo, “Distributed denial of
service (ddos) resilience in cloud: Review and conceptual cloud ddos
mitigation framework,” Journal of Network and Computer Applications,
vol. 67, pp. 147–165, 2016.

[37] M. Yu, T. He, P. McDaniel, and Q. K. Burke, “Flow Table Security in
SDN: Adversarial Reconnaissance and Intelligent Attacks,” in IEEE IN-
FOCOM 2020-IEEE Conference on Computer Communications. IEEE,
2020, pp. 1519–1528.

[38] Q. Burke, P. McDaniel, T. L. Porta, M. Yu, and T. He, “Misreporting
Attacks in Software-Defined Networking,” in EAI SecureComm 2020 –
16th EAI International Conference on Security and Privacy in Commu-
nication Networks. EAI, 2020, pp. 1519–1528.

[39] B. Harris and R. Hunt, “Tcp/ip security threats and attack methods,”
Computer communications, vol. 22, no. 10, pp. 885–897, 1999.

[40] F. B. Shaikh and S. Haider, “Security threats in cloud computing,”
in 2011 International conference for Internet technology and secured
transactions. IEEE, 2011, pp. 214–219.

[41] V. Varadharajan and S. Black, “A multilevel security model for a
distributed object-oriented system,” in [1990] Proceedings of the Sixth
Annual Computer Security Applications Conference. IEEE, 1990.

[42] D. Volpano and G. Smith, “A type-based approach to program security,”
in Colloquium on Trees in Algebra and Programming. Springer, 1997,
pp. 607–621.

[43] M.-K. Shin, K.-H. Nam, and H.-J. Kim, “Software-defined networking
(sdn): A reference architecture and open apis,” in 2012 International
Conference on ICT Convergence (ICTC). IEEE, 2012, pp. 360–361.

[44] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in Presented as part of the 10th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 13), 2013.

[45] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in Presented as part of the 9th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
12), 2012, pp. 113–126.

[46] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang, “Pga: Using graphs to
express and automatically reconcile network policies,” ACM SIGCOMM
Computer Communication Review, vol. 45, no. 4, pp. 29–42, 2015.

[47] S. Pisharody, J. Natarajan, A. Chowdhary, A. Alshalan, and D. Huang,
“Brew: A security policy analysis framework for distributed sdn-based
cloud environments,” IEEE Transactions on Dependable and Secure
Computing, 2017.

[48] A. Abhashkumar, J.-M. Kang, S. Banerjee, A. Akella, Y. Zhang, and
W. Wu, “Supporting diverse dynamic intent-based policies using janus,”
in Proceedings of the 13th International Conference on emerging
Networking EXperiments and Technologies, 2017, pp. 296–309.

[49] B. Jiang, G. Huang, T. Wang, J. Gui, and X. Zhu, “Trust based energy
efficient data collection with unmanned aerial vehicle in edge network,”
Transactions on Emerging Telecommunications Technologies, 2020.

[50] T. Li, W. Liu, T. Wang, Z. Ming, X. Li, and M. Ma, “Trust data
collections via vehicles joint with unmanned aerial vehicles in the
smart internet of things,” Transactions on Emerging Telecommunications
Technologies, p. e3956, 2020.

[51] Y. Ren, Z. Zeng, T. Wang, S. Zhang, and G. Zhi, “A trust-based
minimum cost and quality aware data collection scheme in p2p network,”
Peer-to-Peer Networking and Applications, 03 2020.

[52] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

16

