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Abstract—The performance-driven design of SDN architec-
tures leaves many security vulnerabilities, a notable one being
the communication bottleneck between the controller and the
switches. Functioning as a cache between the controller and the
switches, the flow table mitigates this bottleneck by caching flow
rules received from the controller at each switch, but is very
limited in size due to the high cost and power consumption of
the underlying storage medium. It thus presents an easy target
for attacks. Observing that many existing defenses are based on
simplistic attack models, we develop a model of intelligent attacks
that exploit specific cache-like behaviors of the flow table to
infer its internal configuration and state, and then design attack
parameters accordingly. Our evaluations show that such attacks
can accurately expose the internal parameters of the target flow
table and cause measurable damage with the minimum effort.

Index Terms—Software Defined Networking, cache inference,
Denial of Service attack.

I. INTRODUCTION

As a new networking paradigm, Software Defined Network-
ing (SDN) has fundamentally changed the way networks are
built and maintained. By separating the data plane and the
control plane, SDN moves the control functions to a logically
centralized controller, thus enabling flexible routing, service
composition, and network management. These advantages
have led to massive adoption of SDN.

Meanwhile, the widespread adoption raises the issue of
security. While SDN eases the defense against traditional IP-
network attacks such as port scanning and firewall probing [1]
by using agile structures and policies [2], it also introduces
new vulnerabilities that allow attackers to learn about the target
network and use the learned information to attack it.

We hereby focus on the vulnerabilities of the flow table,
which is a data structure at each SDN-enabled switch that
stores the flow rules received from the controller. These flow
rules, each containing match, action, and several other fields
(e.g., priority, counters), encode how the controller wants
each flow to be processed by the switch. Packets not matching
existing rules in the flow table will typically be forwarded
to the controller for further processing, which invokes slow
elements such as the switch CPU [3] and significantly degrades
the performance. However, due to the high cost and power
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consumption of the underlying storage medium, flow tables
are usually small, holding up to a few thousand rules [4].

This vulnerability has been explored to launch various flow
table overflow attacks [5], [6], [7], [8] and control plane
saturation attacks [9]. However, existing studies have only
modeled unintelligent attacks that apply simple techniques to
bluntly harm the target. We argue that an intelligent attacker,
that employs a reconnaissance stage to learn the internal
configuration (e.g., size, policy) and state (e.g., load) of the
target flow table, can attack more precisely and efficiently.

To demonstrate the above claim, we develop algorithms to
explicitly infer the size, policy, and state of the target flow
table from probes sent by a compromised host, based on which
intelligent Denial of Service (DoS) attacks can be mounted to
cause measurable damage with the minimum effort.

A. Related Work

SDN vulnerabilities: The design of existing SDN archi-
tectures and protocols is performance-driven, leaving many
security vulnerabilities. For example, the controller cannot
ensure that the data plane executes control instructions as
expected [10], controller logic can be exploited to subvert
some controllers [11], and the controller presents a single
point of failure [12]. However, the weakest component of
SDN is the communication bottleneck between the controller
and the switches [3]. This bottleneck can be exploited in
both active attacks [9], [5], [6], [7], [8] and adversarial
reconnaissance [13], [14], [15], [16], [17]. We will exploit this
bottleneck for joint reconnaissance and attack. Unlike previous
works [15], [16], [17] that focus on inferring specific rules, we
aim at inferring global parameters of the flow table (e.g., size,
policy) useful for planning later attacks.
Flow table management: Existing techniques can be classi-
fied into: (i) rule replacement, (ii) rule compression, and (iii)
rule distribution [18]. Among the three, approach (i) is the
most mature technology that has been widely implemented in
OpenFlow switches, e.g., Open vSwitch supports the First In
First Out (FIFO) policy and the Least Recently Used (LRU)
policy [19], and hardware switches usually employ FIFO [6].
Rule replacement policies & their security: Existing rule
replacement policies are designed exclusively for a benign
environment. In addition to FIFO and LRU, researchers have
proposed other rule replacement policies, such as those based
on the Least Frequently Used (LFU) policy [20], [21], [22],
and the approximation of Bélády’s optimal replacement policy
[23]. In contrast, very few studies have considered the security
of rule replacement policies in an adversarial environment.



In [6], [7], [8], the feasibility of filling the flow table with
the attacker’s rules was demonstrated, but the attack was
unintelligent. In [5], an attack was designed to cause flow
table overflow with the minimum rate of attacking traffic.
However, it assumed that an attacker’s rule will remain in the
flow table until its timeout, which is not valid with reactive
eviction. The work closest to ours is [14], which attempted to
model an intelligent adversary that infers the flow table size
and occupancy under a given policy (FIFO or LRU). However,
their algorithms require knowledge of the replacement policy,
and ignore the interference from background traffic.
Security of general caches: Viewing the flow table as a cache
of flow rules, one might borrow results on general caches, but
even then existing results are very limited. In [24], a procedure
was proposed to infer the cache replacement policy and input
parameters from observations of all the misses. This solution is
not applicable to adversarial reconnaissance as the attacker can
only observe the results of his own packets. In [25], two attacks
were proposed to replace popular contents in the cache by
unpopular contents, but their parameters were not intelligently
designed. In [26], algorithms were proposed to infer the size
and other parameters of an LRU cache, but did not address
the problem of unknown cache replacement policy.

B. Summary of Contributions

We demonstrate the feasibility of intelligent reconnaissance-
based attacks in SDN by exploiting the data-control plane
bottleneck and specific cache-like behaviors of the flow table.

1) We formulate the adversarial cache inference problem to
jointly infer both static parameters (e.g., size, policy) and
dynamic parameters (e.g., current load) of the flow table
from a single compromised host.

2) By analyzing the behaviors of candidate policies, we
develop algorithms to explicitly infer the size, the policy,
and the load parameters of the target flow table, using
only two primitives that have been shown to be feasible.

3) We demonstrate the value of the inferred information by
designing intelligent Denial of Service (DoS) attacks that
minimize the attack rate while sufficiently degrading the
performance of legitimate users.

4) We verify through synthetic and trace-driven simulations
that the proposed solution can achieve accurate recon-
naissance (with more than 95% accuracy) and efficient
attacks despite interference from background traffic.

Roadmap. Section II introduces our models and problem
formulation. Sections III–IV present our solutions for recon-
naissance and attack design. Section V validates the proposed
solutions via simulations. Section VI concludes the paper.

II. PROBLEM FORMULATION

A. Flow Table Model

We model the flow table at the target switch as a cache
of flow rules. According to the OpenFlow Switch Speci-
fication 1.5.1 [27], each rule contains a number of fields
including match, priority, counter, action, and timeout, that
specify which packets will be processed by this rule and how.

OpenFlow allows a variety of header fields to be used as match
fields, e.g., source/destination MAC addresses, IP addresses,
and port numbers. It is up to the controller which fields to use.
However, prior work [5] has shown that by sending probing
packets while changing one header field at a time, the attacker
can learn which header fields are used in matching packets.

As a cache of flow rules, the flow table is characterized by
two basic parameters: (1) the size that specifies the maximum
number of stored flow rules and (2) the replacement policy that
specifies which rule will be evicted if a new rule needs to be
installed when the table is full. The first parameter is akin to
the cache size, and the second parameter is akin to the cache
replacement policy. Although OpenFlow also allows rules to
be proactively removed due to timeouts, the use of timeouts
is optional, and their influence will be dominated by reactive
rule replacements when the flow table is full.

We denote the flow table size by C (unit: rules), and the
replacement policy by π. In commodity switches, C is usually
small, up to a few thousand [4]. The replacement policy π also
comes from a small set of candidate policies. For example,
Open vSwitch [19] implements an approximation of Least
Recently Used (LRU) when rules have idle timeouts and no
hard timeout, or First In First Out (FIFO) when rules have
hard timeouts and no idle timeout. A study [6] found that
certain hardware switches use FIFO. While there are more
sophisticated policies proposed by researchers, e.g., [20], [21],
[22], [23], they are yet to be adopted in production. We will
therefore focus on the common case of π ∈ {FIFO, LRU} and
discuss extensions to other cases when appropriate.

B. Adversary Model

We consider an external attacker that performs reconnais-
sance and attacks against the target switch from a compro-
mised host. This also models coordinated reconnaissance and
attacks from multiple compromised hosts against the same
switch. We assume the following primitives for the attacker:
• Primitive 1: The attacker can detect whether a given

probe results in a flow table hit or miss. This capability
has been demonstrated in previous studies [28], [14]. For
example, the attacker can measure the round-trip time
(RTT) of the probe and compare it with a threshold
learned from sure misses (RTTs of packets with randomly
generated source IP addresses) and sure hits (RTT for
the second packet in a pair of back-to-back packets with
identical headers).

• Primitive 2: The attacker can craft a probe that requires
a new rule. It has been shown in [5] that the attacker
can learn the matching fields and craft the probes by
modifying one or multiple matching fields, such that
each crafted probe requires a distinct rule. Moreover, as
each matching field has a large solution space (e.g., all
MAC/IP addresses or port numbers), the randomly crafted
matching fields will almost never coincide with those of
legitimate packets.

Let dI denote the (average) delay between a miss and
the time that the requested rule is installed, i.e., the rule
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Fig. 1. Forward-backward probing (‘h’: hit; ‘m’: miss).

installation time. We assume that the attacker can estimate dI
by measuring the differences between RTTs of hits and misses.

C. The Adversarial Cache Inference Problem

The goal of the attacker is to optimally use the above prim-
itives to learn about and attack the flow table. This includes
inferring the size C, the policy π, and other parameters, as
well as using this information to design more efficient attacks.
We refer to this problem as the adversarial cache inference
problem, as solutions to this problem are also applicable to
other types of caches as long as the same primitives are
supported. In the sequel, we will interchangeably use ‘flow
table’ and ‘cache’, and ‘flow rule’ and ‘content’.

Challenges: While simplified versions of the above problem
have been tackled in prior works [14], [26], the solutions
therein do not solve our problem. In [14], two different
algorithms were proposed to infer the cache size under FIFO
and LRU, respectively, but the policy must be known to apply
the right algorithm. In [26], an algorithm was proposed to
infer the size of an LRU cache, but it did not consider the
problem that the replacement policy can be different and un-
known. To our knowledge, this is the first work simultaneously
addressing unknown cache size, unknown replacement policy,
and interference from background traffic.

III. JOINT CACHE SIZE AND POLICY INFERENCE

As size and policy are static parameters, the attacker can
infer these parameters during off-peak hours when there is
little background traffic, in preparation for larger attacks. In
this section, we demonstrate the feasibility of such attacks by
developing explicit size and policy inference algorithms.

A. Cache Size Inference

We will show that under mild conditions on the replacement
policy, the cache size can be inferred without knowing the
exact policy. Modeling the internal state of the cache by
an ordered list of cached contents (f1, . . . , fC), where the
content f1 at the head of the list is the last to evict and the
content fC at the tail is the first to evict, we assume:

1) the newly entered content is always at the head;
2) if all the cached contents are only requested once, then the

content at the tail is the first content entering the cache.
These conditions hold under both FIFO and LRU, two of the
most commonly-used replacement policies. Moreover, they
hold for a more general family of permutation policies [29].
For the ease of presentation, in the sequel we will use fi to
denote both a probe and the content requested by a probe.

Basic idea: Our key observation is that under the above
conditions, the cache size can be revealed by a “forward-
backward probing experiment” as follows. We illustrate the
basic idea in Fig. 1 in the simplest case when there is

Algorithm 1: Robust Cache Size Estimation (RCSE)
input : Initial guess of cache size c0, number of repetitions per

experiment n, rule installation time dI
output: Estimated cache size Ĉ

1 Ĉ ← 0;
2 c← c0;
3 while true do
4 foreach i = 1, . . . , n do
5 δ ← forward-backward-probing(c, dI);
6 Ĉ ← max(Ĉ, δ);
7 if δ = c then
8 break;
9 if Ĉ < c then

10 break;
11 else
12 c← 2× c;
13 return Ĉ;

forward-backward-probing(c, dI):
14 δ ← 0;
15 foreach i = 1, . . . , c do
16 send probe fi;
17 wait for dI ;
18 foreach i = c, c− 1, . . . , 1 do
19 send probe fi;
20 if fi results in a hit then
21 δ ← δ + 1;
22 else
23 break;
24 return δ;

no background traffic. Given an estimated cache size c, we
generate c distinct probes, send them back-to-back in the
order of f1, . . . , fc (“forward probing”), and wait for time dI
to ensure that the requested contents are installed. We then
send these probes in the reverse order fc, . . . , f1 (“backward
probing”). In absence of background traffic, the cache state
should be (fc, . . . , fc−min(c,C)+1) after the forward probing,
with fc−min(c,C)+1 being the next to evict. Thus, the backward
probing should yield hits for exactly min(c, C) probes.

This probing mechanism has been used to estimate the size
of an LRU cache [26]. However, it was not realized then that
the method applies to a broader set of policies, and there was
no consideration of background traffic.

Algorithm: We now formalize this idea and augment it
to guard against background traffic. The algorithm, Robust
Cache Size Estimation (RCSE) (Algorithm 1), is based on
a subroutine called forward-backward-probing(c, dI)
that performs the above probing experiment and returns the
number of hits δ. Note that once we encounter a miss during
backward probing, all the subsequent probes will lead to
misses, and hence no further probe is needed.

The main algorithm repeats the experiment for each value of
c for n times (lines 4–8), where n controls the tradeoff between
the robustness against background traffic and the probing cost.
Note that since only the largest number of hits is recorded
(line 6), once we reach the upper bound c (line 7), there is no
need to further repeat the experiment.

Overall, RCSE starts with an initial guess of the cache size
c = c0 (line 2), and then doubles it every n experiments
(line 12) until the largest number of hits out of n experiments



is still less than c (line 10), at which point this largest number
of hits is returned as the estimated cache size.

Accuracy: We now analyze the accuracy of RCSE (Algo-
rithm 1) in the presence of background traffic. The key obser-
vation is that background traffic can only cause underestima-
tion of the cache size. Thus, if we repeat the experiment many
times, then the largest number of hits across the experiments
will converge to the true cache size.

To formalize this intuition, suppose that the background
traffic is modeled as a Poisson process of rate λ.

Theorem III.1. Let Tc denote the time to send c probes. The
error probability of RCSE (Algorithm 1) decays exponentially
in n, and specifically,

Pr{Ĉ 6= C} ≤ (1− e−λT4(C−1))n. (1)

Proof. As background traffic can only cause underestimation
of the cache size, Pr{Ĉ 6= C} = Pr{Ĉ < C}.

Since δ on line 5 of Algorithm 1 equals min(c, C) if there
is no background traffic during the experiment, we have

Pr{δ < min(c, C)} ≤ 1− e−λT2c . (2)

Let c∗ be the final value of c. To have Ĉ < C, we must have
(i) c∗ ≤ C and Ĉ < c∗, or (ii) c∗ > C and Ĉ < C. In case (i),

Pr{Ĉ < C} ≤ Pr{ max
i=1,...,n

δi < c∗} ≤ (1− e−λT2c∗ )n, (3)

where δi is the result of the i-th probing experiment for input
c∗. In case (ii),

Pr{Ĉ < C} ≤ Pr{ max
i=1,...,n

δi < C} ≤ (1− e−λT2c∗ )n. (4)

Although c∗ is random, we must have Ĉ = c∗/2 in the
second-to-last round in order to execute line 12. As Ĉ is mono-
tone increasing, having Ĉ < C when the algorithm stops im-
plies that c∗/2 < C and hence c∗ ≤ 2(C−1). This implies that

Pr{Ĉ < C} ≤ (1− e−λT2c∗ )n ≤ (1− e−λT4(C−1))n, (5)

which proves the theorem.

We note that although the above analysis is done for Poisson
traffic, our algorithm applies to other types of traffic too.

Probing cost: Measured by the number of probes, the
probing cost of RCSE is bounded as follows.

Theorem III.2. The number of probes required by RCSE is
upper-bounded by{

n(7C − 2c0 + 1) if c0 ≤ C,
n(c0 + C + 1) if c0 > C.

(6)

Proof. The worst case is when the experiment for each value
of c is repeated for n times, and c grows from the initial guess
c0 to the first value greater than C. Depending on the initial
guess c0, there are two cases:

Case 1. c0 ≤ C: The value of c grows as
c0, 2c0, . . . , 2

m+1c0, where m = blog(C/c0)c. For c =
c0, . . . , 2

mc0, each experiment takes at most 2c probes. For

f1 fC-1 fC
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f2 fC fC+1

...
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Fig. 2. Cache state during “flush-promote-evict-test”; ti: dI time after step
i (i = f : flush, i = p: promote, i = e: evict).

c = 2m+1c0, each experiment takes at most c+C+ 1 probes.
Therefore, the total number of probes is at most

m∑
i=0

nc02i+1 + n(2m+1c0 + C + 1)

= n(6c0 · 2m − 2c0 + C + 1) ≤ n(7C − 2c0 + 1). (7)

Case 2. c0 > C: There is only one round with c = c0, in
which each experiment takes at most c0+C+1 probes. There-
fore, the total number of probes is at most n(c0 +C+ 1).

Theorem III.2 clearly characterizes the dependency of the
probing cost on the initial guess of the cache size. It is easy to
see that the minimum worst-case probing cost is 2n(C + 1),
achieved at c0 = C + 1.

B. Replacement Policy Inference
Given the cache size C (estimated by RCSE), we further

infer the replacement policy. We will first consider the special
but realistic case where the policy is known to be either FIFO
or LRU, and then discuss more general cases.

Basic idea: Our idea is to employ a four-step probing exper-
iment that we call “flush-promote-evict-test”. Fig. 2 illustrates
this idea in the basic case when there is no background traffic.
The first step (“flush”) is to fill the cache with distinct contents
f1, . . . , fC , which creates the same cache state under both
candidate policies. The second step (“promote”) is to introduce
a difference in the cache state by requesting f1 again. Under
FIFO, f1 will remain at the tail of the cache, but under LRU,
f1 will be promoted to the head of the cache. The third step
(“evict”) is to introduce a difference in the set of cached
contents by requesting a new content fC+1, which will evict
f1 under FIFO, but f2 under LRU. The last step (“test”) is to
test this difference by requesting f2 again after the eviction
occurs. As the last probe will result in a hit under FIFO and
a miss under LRU, we can detect which policy is used.

Algorithm: We now augment this procedure to improve its
robustness. The algorithm, called Robust Cache Policy Detec-
tion (RCPD) (Algorithm 2), is based on a subroutine called
flush-promote-evict-test(C, dI) that performs the
above experiment and returns the result of the last probe. The
main algorithm repeats this experiment for N times, where N
controls the tradeoff between the robustness and the probing
cost. As shown next, only FIFO can result in ‘hit’, and hence
once an experiment returns ‘hit’, we can detect the policy
as FIFO and skip the remaining experiments. We will only
detect the policy as LRU if all the experiments return ‘miss’.

Accuracy: The presence of background traffic can only
cause error in one way: under FIFO, contents installed due to



Algorithm 2: Robust Cache Policy Detection (RCPD)
input : Cache size C, number of experiments N
output: Detected cache replacement policy

1 foreach i = 1, . . . , N do
2 if flush-promote-evict-test(C, dI) returns ‘hit’

then
3 return ‘FIFO’;
4 return ‘LRU’;
flush-promote-evict-test(C, dI):

5 send C distinct probes f1, . . . , fC back to back;
6 send f1 again;
7 send a new probe fC+1;
8 wait for dI ;
9 send f2 again;

10 return the result (‘hit’/‘miss’) of the last probe;

background traffic may cause f2 to be evicted before the test
step, resulting in ‘miss’; however, under LRU, background
traffic will not change the experiment result, which is always
‘miss’. Thus, by repeating the experiments many times and
only detecting the policy as LRU if all the experiments report
‘miss’, our detected policy will converge to the ground truth.

To formalize this intuition, we again model the background
traffic as a Poisson process of rate λ. Note that RCPD does
not rely on this assumption.

Theorem III.3. RCPD (Algorithm 2) will always detect LRU
correctly, but may detect FIFO as LRU with a probability of
(1− e−λTC+3)N , where Tc is defined as in Theorem III.1.

Proof. Under LRU, content f2 must have been evicted before
the test step (either by a subsequent probe or by the back-
ground traffic), and thus the subroutine will always return
‘miss’, which makes RCPD return ‘LRU’ with certainty.
Under FIFO, Fig. 2 (a) has explained that if there is no
background traffic during an experiment of “flush-promote-
evict-test” (which lasts for TC+3), then the subroutine will
return ‘hit’. Meanwhile, if there is any background traffic
during the experiment which inserts at least one new content,
then f2 will be evicted before the test, and hence the subroutine
will return ‘miss’. Hence, the probability for the subroutine to
return ‘miss’ under FIFO is the probability to have at least one
arrival in the background traffic during an experiment, which
equals 1 − e−λTC+3 . The overall probability of mistakenly
detecting FIFO as LRU via N independent experiments is thus
(1− e−λTC+3)N .

Probing cost: It is easy to see that the maximum number of
probes required by RCPD is N(C + 3). Meanwhile, we show
that in the special case of no background traffic, RCPD with
N = 1 achieves the optimal probing cost.

Theorem III.4. In the case of no background traffic, the
number of probes required by any algorithm to distinguish
FIFO and LRU is at least C + 3.

Proof. As the cache may be initially empty, at least C distinct
probes are required to fill the cache, before which there will
be no eviction and hence no invocation of the replacement
policy. Moreover, to generate different responses (hits/misses),
the cached contents must be different under the two policies,

which requires at least one probe for a content already in the
cache to put different contents at the tail of the cache, and at
least one probe for a new content to evict the content at the
tail. Finally, to detect the difference in cached contents, at least
one more probe is needed, such that the requested content is
cached under one policy but not cached under the other policy.
Hence, the required number of probes is at least C + 3.

Discussion: The above idea can be extended to distinguish
multiple candidate policies. Using binary detection algorithms
like RCPD to differentiate two sets of policies via carefully
designed probing sequences, we can gradually narrow down
the candidate policies. We will also discuss another approach
to handle multiple candidate policies in Section IV-A4.

IV. INTELLIGENT ATTACKS

Having learned the cache (i.e., flow table) size and policy,
we now demonstrate how this information can be used to
launch attacks against legitimate users of the cache.

A. Intelligent Side Channel Attack

We show that under common assumptions, the attacker
can use the information (size and policy) learned during
reconnaissance to infer parameters of the background traffic.
Unlike previous side channel attacks [15], [16], [17] that focus
on inferring specific rules, we aim at inferring parameters
useful for planning DoS attacks, such as the number of active
flows and the individual flow rates.

1) Model of Background Traffic: We assume that the
background traffic consists of F flows, each modeled as an
independent Poisson process of rate λi, requesting content
(i.e., rule) fi (i ∈ {1, . . . , F}). Let λ :=

∑F
i=1 λi denote

the total rate. The goal of this attack is to jointly infer F
and (λi)

F
i=1. In our evaluations, we further assume that the

flow sizes follow the Zipf distribution with skewness α, i.e.,
λi
λ = i−α∑F

j=1 j
−α , which reduces the unknown parameters to

λ, F , and α. However, the Zipf assumption is not mandatory
for our solution. The Poisson traffic model, a.k.a. the Inde-
pendent Reference Model (IRM), has been widely used in the
literature. It is also known that the amount of traffic in different
flows follows the Zipf distribution [30].

2) Background on TTL Approximation: We will leverage a
recent advance in the caching literature, which approximately
predicts the performance of caches based on their Time-To-
Live (TTL) approximations [31], [32]. A TTL cache handles
different contents independently by associating each cached
content with a timer, and evicting the content when the timer
expires, independently of the other contents. Although cache
replacement policies may not follow TTL-based eviction,
many commonly-used policies (e.g., LRU, FIFO, RANDOM,
q-LRU, k-LRU) can be closely approximated by TTL-based
policies in terms of hit probability [32].

In particular, the following has been shown for IRM [33]:

• TTL Approximation for FIFO: A FIFO cache can be ap-
proximated by a non-reset TTL cache with a constant timeout
τ , i.e., each content entering the cache will be evicted after



time τ , regardless of the request pattern. The hit probability
of content fi with request rate λi is given by

hFIFO
i =

λiτ

1 + λi(dI + τ)
, (8)

where τ , referred to as the characteristic time, is the solution
to the following characteristic equation:

F∑
i=1

λiτ

1 + λi(dI + τ)
= C. (9)

• TTL Approximation for LRU: An LRU cache can be approx-
imated by a reset TTL cache with a constant timeout τ , i.e.,
each content in the cache will be evicted after an idle time of
τ (i.e., not being requested for time τ ). The hit probability of
content fi with request rate λi is given by

hLRU
i =

eλiτ − 1

λidI + eλiτ
, (10)

where the characteristic time τ is the solution to the following
characteristic equation:

F∑
i=1

eλiτ − 1

λidI + eλiτ
= C. (11)

Remark: We note that TTL approximations have been
proved accurate for more general traffic models, e.g., renewal
processes [32] and stationary ergodic processes [31], for which
our approach also applies.

3) Attack Strategy: The idea is that by requesting a new
content (via a carefully crafted probe [5]) at a selected rate,
the attacker can measure the hit probability and compute the
characteristic time by the TTL approximation. Plugging the
computed characteristic time into the characteristic equation
will yield an equation of the unknown parameters λ, F , and α.
The attacker can repeat this procedure under different probing
rates to obtain a system of equations, from which the three
unknown parameters can be solved.

Specifically, the attacker will perform three experiments
with different probing rates λ(1)0 , λ(2)0 , and λ

(3)
0 . In the j-th

experiment (j = 1, . . . , 3), he will send probes requesting a
new content according to an independent Poisson process of
rate λ(j)0 , and measure the hit probability h(j)0 . If the policy is
FIFO, the attacker can compute the characteristic time by

τ
(j)
FIFO =

h
(j)
0 (1 + λ

(j)
0 dI)

λ
(j)
0 (1− h(j)0 )

, (12)

and then plug it into (9) to obtain an equation

F∑
i=1

λiτ
(j)
FIFO

1 + λi(dI + τ
(j)
FIFO)

= C − h(j)0 . (13)

If the policy is LRU, the attacker can compute the character-
istic time by

τ
(j)
LRU =

1

λ
(j)
0

log

(
1 + h

(j)
0 λ

(j)
0 dI

1− h(j)0

)
, (14)

and then plug it into (11) to obtain an equation

F∑
i=1

eλiτ
(j)
LRU − 1

λidI + eλiτ
(j)
LRU

= C − h(j)0 . (15)

Since the obtained equations only contain three unknown
variables λ, F, α (note: λi is a function of λ, F, α), the
attacker can solve the three equations for their values.

This approach can be extended to infer more parameters
(e.g., arbitrarily-valued (λi)

F
i=1) by performing more probing

experiments. Moreover, to overcome the error in estimating
the hit probabilities from measurements, the probing rates
λ
(1)
0 , λ(2)0 , and λ(3)0 need to be widely different, and multiple

probing flows can be sent concurrently, both for generating
more diverse equations.

4) Discussion on Size/Policy Inference: The TTL approxi-
mation also inspires an alternative approach to cache size and
policy inference as explained below.

For policy inference, we (the attacker) can leverage a policy-
agnostic characteristic time estimation algorithm in [26] to
estimate the characteristic time. With this information, we
can use (8, 10) to predict the hit probability for a probing
flow of a given rate under each candidate policy. We then
send the probing flow and measure its hit probability. The
candidate policy for which the prediction is more accurate
is the inferred policy. This solution can be easily extended
to the case of multiple candidate policies by comparing the
measured hit probability to the predicted value given by the
TTL approximation for each of these policies.

For size inference, we note that the idea in Section IV-A3
can be easily extended to jointly infer C and the parameters
(λ, F, α) of the background traffic, by conducting one more
probing experiment to obtain one more equation. Note that this
approach still requires knowledge of the policy, which can be
obtained by the above method.

B. Intelligent Denial of Service (DoS) Attack

We now consider a type of DoS attack that aims at occu-
pying the cache with contents not useful for legitimate users
to lower their hit probabilities. Blunt versions of this attack
have been studied in [5], [6], [7], [8]. However, we will show
that knowledge of the cache size, policy, and load allows the
attack to be designed more intelligently to achieve measurable
damage with the minimum effort.

1) Attack Objective: We assume that before the attack, the
attacker has learned the cache size C, the policy π, and the
rates of background flows (λi)

F
i=1. We also assume that the

attacker has crafted Ca distinct probes, each requiring a new
content, by the method in [5]. The value of Ca should be
large enough to occupy the cache (i.e., Ca ≥ C) and small
enough to avoid detection for brute-force attacks. We focus
on the design of attack rates (λ′j)

Ca
j=1, such that by sending

each probe at rate λ′j (j = 1, . . . , Ca), the attacker can lower
the legitimate users’ average hit probability to a target level h̄
using the minimum total attack rate

∑Ca
j=1 λ

′
j .



2) Optimal Attack Design: We will show how to optimally
design the attack via the TTL approximation. For concrete
analysis, we assume IRM for background traffic, but our
approach can be extended to other traffic models using more
general TTL approximations [31], [32].

First, we show that under the TTL approximation, the attack
design problem can be reduced to a univariate optimization
that assigns the same rate to all the attack flows.

Theorem IV.1. Under FIFO, an optimal design to make the
TTL approximation of the legitimate users’ average hit proba-
bility ≤ h̄ is to set λ′j ≡ λa (j = 1, . . . , Ca) for some constant
λa. Under LRU, the same holds if dI is sufficiently small.

Proof. Under FIFO, the TTL approximation of the legitimate
users’ average hit probability equals

F∑
i=1

λi
λ
· λiτ

1 + λi(dI + τ)
, (16)

where the characteristic time τ is the solution to
Ca∑
j=1

λ′jτ

1 + λ′j(dI + τ)
+

F∑
i=1

λiτ

1 + λi(dI + τ)
= C. (17)

As λiτ
1+λi(dI+τ)

is monotone increasing in τ , when bounding
the total attack rate by B, the design that minimizes (16)
should minimize τ , and hence minimize the second term on
the left-hand side of (17). Thus, the optimal design should
maximize the first term, i.e., be the optimal solution to

max

Ca∑
j=1

λ′jτ

1 + λ′j(dI + τ)
(18a)

s.t.
Ca∑
j=1

λ′j ≤ B, (18b)

λ′j ≥ 0, ∀j. (18c)

As
λ′jτ

1+λ′j(dI+τ)
is a concave function in λ′j , we see by Jensen’s

inequality that the optimal solution to (18) is λ′j ≡ B/Ca =:
λa. Thus, given any optimal design λ′j = λ∗j (j = 1, . . . , Ca)
that makes (16) no more than h̄ with the minimum total rate,
the design λ′j ≡ 1

Ca

∑Ca
i=1 λ

∗
i (j = 1, . . . , Ca) also makes (16)

no more than h̄ with the same total rate, hence equally optimal.
Under LRU, the TTL approximation of the legitimate users’

average hit probability equals

F∑
i=1

λi
λ
· eλiτ − 1

λidI + eλiτ
, (19)

where the characteristic time τ is the solution to
Ca∑
j=1

eλ
′
jτ − 1

λ′jdI + eλ
′
jτ

+

F∑
i=1

eλiτ − 1

λidI + eλiτ
= C. (20)

Again, as eλiτ−1
λidI+eλiτ

is monotone increasing in τ , when
bounding the total attack rate by B, the design that minimizes
(19) should maximize the first term on the left-hand side of

(20). Generally, e
λ′jτ−1

λ′jdI+e
λ′
j
τ

is neither concave nor convex in

λ′j . However, as dI → 0, it is reduced to 1 − e−λ
′
jτ , which

is concave in λ′j . Thus, by similar arguments as in the case
of FIFO, having identical values for λ′j’s is optimal.

By Theorem IV.1, the attack design problem is reduced to
finding the minimum value of λa, such that sending Ca attack
flows, each at rate λa, can bring the legitimate users’ average
hit probability down to h̄.

Attack rate design under FIFO: By the TTL approximation
(8), we know that to satisfy the upper bound on the average
hit probability, the characteristic time τ needs to satisfy

F∑
i=1

λi
λ
· λiτ

1 + λi(dI + τ)
≤ h̄. (21)

Although this is effectively a high-order inequality of τ that is
hard to solve in closed form, we observe that the left-hand side
of (21) is monotone increasing in τ , and hence the solution
must in the form of τ ≤ τ∗, where τ∗ satisfies (21) with
equality and can be found by a binary search. Then by (9),
we have the following relationship between τ and λa:

Caλaτ

1 + λa(dI + τ)
+

F∑
i=1

λiτ

1 + λi(dI + τ)
= C. (22)

The left-hand side of (22) is monotone increasing in both τ
and λa. Therefore, the minimum value of λa is achieved at
the maximum value of τ , i.e., the optimal attack rate is

λFIFO
a =

C −
∑F
i=1

λiτ
∗

1+λi(dI+τ∗)

Caτ∗ − C(dI + τ∗) +
∑F
i=1

λiτ∗(dI+τ∗)
1+λi(dI+τ∗)

. (23)

Attack rate design under LRU: By the TTL approximation
(10), we know that to satisfy the upper bound on the average
hit probability, the characteristic time τ needs to satisfy

F∑
i=1

λi
λ
· eλiτ − 1

λidI + eλiτ
≤ h̄. (24)

Again, solving (24) explicitly is difficult, but since its left-hand
side is monotone increasing in τ , we know that the solution
is in the form of τ ≤ τ∗, where τ∗ satisfies (24) with equality
and can be computed by a binary search. Then by (11), we
have the following relationship between τ and λa:

Ca(eλaτ − 1)

λadI + eλaτ
+

F∑
i=1

eλiτ − 1

λidI + eλiτ
= C. (25)

Since the left-hand side of (25) is monotone increasing in
both τ and1 λa, the minimum value of λa is achieved at the
maximum value of τ . Plugging τ = τ∗ into (25) yields a
transcendental equation of λa that can be solved numerically,
and the solution is the optimal attack rate λLRU

a .

1The monotonicity in τ is easy to verify. For λa, taking the derivative of the
left-hand side of (25) wrt λa yields Ca

(λadI+e
λaτ )2

(dI(λaτe
λaτ − eλaτ +

1)+τeλaτ ). Since xex−ex+1 ≥ 0 for all x ≥ 0, λaτeλaτ−eλaτ+1 ≥ 0
and hence the derivative is non-negative, proving that the left-hand side of
(25) is monotone increasing in λa.



V. PERFORMANCE EVALUATION

We evaluate the proposed reconnaissance and attack strate-
gies via both synthetic and trace-driven simulations.

A. Simulation Setting
Synthetic simulation: We generate 20 instances of back-

ground traffic according to the model in Section IV-A1, where
the number of flows F = 5000, the skewness α = 0.9, and
the total rate λ = 0.01 (packets/ms) during the size/policy
inference, and λ = 10 (packets/ms) during the attacks. We set
F according to the number of active flows at switches in data
centers [34], and α according to the flow size distribution in
a real trace [35]. We use a lower background traffic rate for
size/policy inference as they are static parameters that can be
inferred during off-peak hours. We set the rate during attacks
according to the average rate of the trace [35].

Trace-driven simulation: We generate background traffic
according to the packet trace UNI1 from a data center [35],
from which we extract 20 subtraces by taking 10000 packets
from a random point in time and repeating this for 20 times.

Common parameters: In both types of simulations, we set
the cache size C = 1000 (rules) according to flow table sizes
of commodity switches [4]. We generate probes according to
an independent Poisson process of rate λa to be specified
later, noting that only the relative probing rate λa/λ matters.
We set the average new rule installation time dI = 20 (ms)
according to measurements on commodity switches [20], [36].
In addition, we use the following default parameters for the
proposed algorithms: c0 = 2 and n = 1 for size inference,
N = 10 for policy inference, and Ca = C for DoS attack.

B. Results on Reconnaissance
1) Size Inference: We evaluate RCSE (Algorithm 1) in

comparison with the size inference algorithms in [14] by
the relative error of the estimated cache size: |Ĉ − C|/C.
Note that RCSE is applicable without knowing whether the
policy is FIFO or LRU (‘policy-agnostic’), while [14] used two
different algorithms for FIFO and LRU, and thus must know
the policy (‘policy-aware’). As size inference occurs during
off-peak hours, we set λ = 0.01 for background traffic and
λa = 1 for probes (both in packet/ms) in synthetic simulations.
In trace-driven simulations, we simulate the off-peak scenario
by setting the relative probing rate to 100.

Fig. 3 shows the results for varying the design parameter
n in RCSE, and Fig. 4 shows the results for varying the
relative probing rate under n = 1. The algorithm proposed
in [14] for FIFO (‘policy-aware: FIFO’) incurs about 1000%
of relative error for the trace and is hence omitted in Fig. 3–
4 (b) for better visibility of the other curves. We see that: (i)
although policy-agnostic, RCSE closely matches the accuracy
of the existing size inference algorithm under LRU while
significantly outperforming that under FIFO; (ii) increasing
the number of repetitions n and increasing the probing rate
can both improve the accuracy of RCSE; (iii) the inference by
RCSE is more accurate for the trace. The last phenomenon is
because that the trace exhibits an on-off pattern [34], where
the off periods provide opportunities for accurate inference.
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Fig. 3. Policy-agnostic size inference: vary #repetitions n
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Fig. 4. Policy-agnostic size inference: vary probing rate

2) Policy Inference: We then evaluate the accuracy of
RCPD (Algorithm 2) in terms of the error probabilities under
different ground-truth policies (‘FIFO’ and ‘LRU’); see Fig. 5–
6. To our knowledge, RCPD is the first of its kind.

Compared to RCSE, RCPD requires a much higher probing
rate. Intuitively, the probing rate should be C times higher
than the background traffic rate, so that RCPD can finish one
experiment of “flush-promote-evict-test” without being inter-
fered. As C = 1000, the relative probing rate needs to be 1000.
Fig. 5, under such a probing rate, shows that while a single
experiment still has substantial error, repeating the experiment
multiple times can reduce the error effectively. Fig. 6 shows
that increasing the probing rate is another effective way of
reducing the error. Note that LRU is always inferred correctly
as predicted in Theorem III.3. Despite requiring a high relative
probing rate, RCPD is still feasible in practice as it only
requires a short burst of probes, e.g., for λ = 0.01 packets/ms,
RCPD only needs to probe at 10 packets/ms for one second
to infer the policy with more than 95% accuracy.
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Fig. 5. Size-aware policy inference: vary #experiments N
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Fig. 6. Size-aware policy inference: vary probing rate
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Fig. 7. Joint parameter inference under LRU

3) Traffic Parameter Inference: We now evaluate the strat-
egy in Section IV-A3 for inferring parameters of the back-
ground traffic during normal hours. We set the probing
rates (λ

(1)
0 , λ

(2)
0 , λ

(3)
0 ) to (0.004, 0.012, 0.324) under FIFO

and (0.003, 0.006, 0.023) under LRU. In the j-th experiment
(j = 1, . . . , 3), lasting 100 seconds, we send multiple probing
flows, each of rate λ(j)0 . Due to space limitation, we only show
the results on synthetic traffic with λ = 10 packets/ms under
LRU; similar results exist under FIFO.

We evaluate the accuracy in inferring each parameter as the
number of probing flows increases, as shown in Fig. 7 (a–c),
where ‘true policy’ is the result from solving the characteristic
time equations for the true policy, and ‘wrong policy’ is the
result from solving the equations for the wrong policy. We
see that: (i) the proposed strategy can infer parameters of the
background traffic to within 5% of error, (ii) the inference
accuracy significantly improves with the number of probing
flows, and (iii) the error is much higher under the wrong
policy when sending sufficiently many probing flows. We
note that although the aggregate probing rate to achieve good
accuracy is high, the rate of a single probing flow is well
within the normal range, which allows the probing to be
performed in a distributed manner (as in DDoS attacks).

We further evaluate the accuracy of inferring the cache size
C using this approach, as discussed in Section IV-A4. The
results, shown in Fig. 7 (d), show that this approach can also
infer C to within 5% of error, but interestingly, the errors
under the true policy and the wrong policy are comparable.
In comparison, RCSE has ≈ 50% of error in this case (not
shown) due to the high background traffic rate.

C. Results on DoS Attack

We have verified Theorem IV.1, i.e., assigning equal rate
to all the attack flows is the most effective (plots omitted
due to space limitation). We now verify the accuracy of the
designed attack rate. Fig. 8 shows both the predicted hit ratio
for legitimate users (‘FIFO/LRU predicted’) given by the TTL
approximation, and the actual value (‘FIFO/LRU actual’) from
simulations, as we send Ca = C attack flows and slowly
increase the rate of each flow. Note that the attack flows can
be sent from distributed locations (i.e., DDoS). We see that
the prediction closely follows the actual value, and hence our
designed attack rate will be near-optimal, i.e., close to the
minimum rate for achieving the targeted hit ratio. We also
have two important observations from this result:

Observation 1. Knowing the policy is crucial for accurate
attack design. As illustrated in Fig. 8, for synthetic traffic,
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Fig. 8. DoS attack: accuracy of attack rate design

the minimum attack rate to achieve h̄ = 0.33 is 0.15 under
LRU but 1 under FIFO; for the trace, the minimum attack
rate to achieve h̄ = 0.5 is 0.06 under LRU but 1 under FIFO.
This demonstrates the need of knowing the policy in planning
intelligent DoS attacks. Meanwhile, we have verified that the
prediction accuracy is not sensitive to errors in the inferred
cache size and traffic parameters.

Observation 2. Contrary to the popular belief that LRU is a
better replacement policy than FIFO, FIFO is actually better
than LRU in terms of resilience to DoS attacks. Fig. 8 shows
that as the attack rate increases, the hit ratio of LRU decays
quickly while the hit ratio of FIFO stays stable. This is because
by design, LRU favors larger flows and hence will favor the
attack flows as they become large; in contrast, FIFO treats all
the flows equally, and is hence more resilient to large attack
flows. To better illustrate this point, we add to Fig. 8 the hit
ratio for Least Frequently Used (LFU), which deterministically
stores the rules for the largest C flows. Despite being the
optimal policy when there is no attack, LFU is even more
vulnerable to DoS attacks, as it only serves the largest C flows
which can all be attack flows. As many replacement policies
are designed to approximate LFU [32], this indicates a need
to redesign replacement policies for better attack resilience.

VI. CONCLUSION

Observing that many studies of flow table security are based
on simplistic attack models, we develop a model of intelligent
attackers that exploit the cache-like behaviors of the flow table
to perform sophisticated reconnaissance and attacks. By devel-
oping explicit inference algorithms and attack strategies, we
show that an intelligent attacker can use simple primitives to
accurately infer the internal parameters of the flow table (size,
policy, and load), based on which he can plan attacks more
efficiently. In demonstrating the capabilities of such attackers,
we also identify the need of new designs and defenses.
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